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ABSTRACT

3 ,12.-0
The results of a lZ-month study of the application of quadratic

optimal control, least squares state, and parameter estimation

to the stability and control problem of the flexible launch vehi-

cle are presented. The feasibility of using optimal control on

a few states cf a high-order system to control the damping in

the bending modes is demonstrated. State estimation (Kalman)

filters are shown to be capable of stabilizing the higher-order

bending modes. Combined state and parameter estimation is

shown to be straightforward, although rather complex in mecha-

nization. A set of control gains and filters is derived for a

particular model vehicle provided by NASA-MFSC. This model,

based on the general characteristics of Saturn V, is specifically

tailored to make it difficultto stabilize. It is shown that the

methods described can stabilize this model at three sample flight

conditions which represent the extremes in the environment. A

set of design guides, or principles, for the application of these

techniques is presented. It is suggested that these techniques

raise the capacity of the control system designer to the consid-

eration of better and higher-order systems than have been

readily tractable heretofore.
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Section 1

SUMMARY

This report presents the results of study that has demonstrated the feasibilit -

of a design approach for launch vehicle stabilization and control systems.

This apprgach combines the method of quadratic optimal control and least

square estimation, and was applied particularly to a launch vehicle similar

to Saturn V.

_m experimental descriptive model (Model No. 2) with low-frequency bending

modes wa_s furnished by NASA-Marshall Space Flight Center (MSFC). Th_s

model exhibits lateral tr._.nslation, rotation, three sloshing modes, four

bending modes, and a third-order actuator. A s'/stematic method for devel-

oping the optimal control cost coefficients is used to develop a low-order

control law. Several methods for the design of the satisfactory low-order

: Kalman filter are presented. The design can be carried out by following _he

design procedure stated in Section 8.

The resultant design, demonstrating feasibility with Model No. 2 (Figures

35 through 41) incorporates sixth-order filter-control combinations.

Stability, excellent bending mode vibration suppression, good insensitivity to

parameter variation, and response characteristics are shown.

The necessity for adaptivity or parameter identification was not shown, but

parameter identification was accomplished. The first bending mode fre-

quency and gain (or influence coefficient) were successfully estimated, using

a parameter estimation augmentation to the Kalman filter. This was accom-

plished using a lower-order model in the filter than in the appr°ximati°n to

Model No. 2.

, !
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Demonstration of the feasibility of this method is significant in three ways:

I. The method extends the conceptual range ot the designer toward the

synthesis of higher-dimensional optimal control systems which
strain the more conventional intuitive analysis procedures.

2. The system synthesis need not be carried to full plant-dimensioned
optimality. The resultant system can be mechanized (ifnot syn-
thesized) in relatively conventional ways.

3. The method provides for escalation to tighter and hence more

sophisticated adaptive control systems, should the need exist.

1966022830-015



Section Z

INTRODUCTION

2. 1 SCOPE OF WORK

This report summarizes the work performed and the conclusions drawn

under National Aeronautics and Space Administration Contract NAS8-Z0087,

Bending Feedback Control. The contract period was 25 June 1965 to Z5 June

1966. The fundamental objectives of this research have been to develop

methods for the design of autopilots for rocket vehicles similar to the

Saturn V and to demonstrate their feasibility.

The following paragraph is quoted verbatim from the contract and consti-

tutes the entire Statement of Work.

"B. STATEMENT OF WORK

The control problem for study is the "stability problem" or the bending feed-

back control problem. A model vehicle of the Saturn class will be furnished

as a study model. This model exhibits severe control characteristics. The

rigid body performance specifications may be such that control frequency to

fundamental bending mode frequency is a ratio of l:Z. Assumptions for the

study may be made (1) that the bending mode data is virtually unknown except

for the range of the variable parameters or (2) that the bending mode data is

accurate to within only ±10 percent. These two assumptions specify dis-

tinctions which must be an integral part of the control design philosophy or

ground rules. In the first case in-flightidentification might be required as

well as a control system which readily adapts to the changing flight cordi-

tions; in the second case, identification and/or a nonconventional control

system might be necessary. The solution may mean active control of the

modes. The latest control theory techniques may be employed in searching

for a solution to the problem, or it may be desirable to use a conventional

1966022830-016



engineering approach. Although the study -will be analytical, the control

system proposed must lead to a design which can eventually be mechanized

in the near future. ,T

Douglas formally proposed and was thereby committed to attack the problem

with a combination of quadratic optimal control and Kalman filter ;heory.

The scope of sul_sequent research has been limited to this combination.

In early conversations with R. Lewis and M. Rheinfurth of NASA-MSFC, the

following significant additionaI information was obtained:

1. MSFC was interested in suppressing bending mode motion for pilot
comfort and reduced structural stress.

2. They were interested in Kalman filters but were concerned that
their order might be too large for them to be mechanized as air-

borne equipment.

3. Assumption (a) of the Work Statement, assuming no knowledge of
the bending mode shapes, was somewhat excessive, because one

can guess, from experience, their approximate shape and frequency.

2.2 REPORT FORMAT

The remainder of this section is devoted to a discussion of closely related

control work on launch vehicles (subsection 2. 3), introductions to the concepts

of quadratic optimal control and Kalman filtering (subsection 2.4), and the

methods of analysis used in the study (subsection 2. 5).

The nature of the design approach has led to (1) development of the optimal

control gains based on the defined low-order linear system, (2) development

of a filter based on the same order system, and (3) the study of parameter

estimation. Sections 3, 4, 5, and 6 are therefore arranged in this order.

Each section -;s somewhat dependent on the preceding sections but relativeiy

independent of those following. Section 3 describes the interpretations made

of the mode system furnished for analysis by NAS-MSFC (Model Specifica-

tion No. 2), the reduction of this model to state space form, and the simpli-

fying assumptions made. Section 4 includes studies of the model system

roots as they were located by quadratic control cost weighting. Section 5

includes three methods for the interpretation of noise in defining Kalman's

.4
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filters and summarizes the experiments made with the optimal controls

combined with the several Kalman filters. Section 5 also presents most of

the final system results. Section 6 discusses the augmentation of the filter-

ing to render the system adaptive and presents the experiments made to

develop this capability.

As the work was performed, a large portion of the difficulties involved com-

puter operations on the large-dimension system matrixes. Section 7 is

devoted to a discussion of these computing difficulties and th£ir resolution.

Section 8 summarizes the findings of the study and relates them to the orig-

inal problem. Proble.,r.. areas and opportunities for future work are

discussed. Section 9 defines terms used, and Section 10 lists references.

Appendix A contains listings of selected computer routines developed for the

purposes of the contract study; those included are considered to be of endur-

ing value.

2.3 RELATED WORK IN THE LITERATURE

Quadratic optimal control has received considerable interest for application

to system control problems because it leads to linear control, which is

usually well behaved.

Rynaski has done considerable work in refining the criterion for a design

method (References 1 and Z). He has also applied the method to a simplified

boost vehicle. He assumes vehicle states are available and shows that one

gets no control gains for unobservable states.

Fisher (Reference 3) applied quadratic control to a somewhat more sophis-

ticated model, with three bending modes, but no sloshing or engine dynamics.

He obtains a 9-dimensional system and suggests using 9 sensor signals and _.

solving algebraically for the 9 unknown states. He further shows experi-

mental results indicating the number of sensors in an axis can be reduced

to 6. But, since states come in pairs (i. e., a state and its derivative), one

needs only half as many sensors as there are elements in the state vector.

One merely obtains the remaining states by differentiating. He defines a

.., ,, ,,, iiiii i i ii i nl • i i i
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vehicle with rigid body rotation and two bending modes and develops control

with three sensors. He suggests that perhaps other states can be ignored.

The fundamental contribution supplementing this earlier work and summa-

rize 1 in this report is the application of least squares estimation of vehicle

states from a small number of sensor signals. Also, quadratic control is

developed to a stage close to the real-world engineering problem. Feasibil-

ity is demonstrated with a high level of certainty with a 20-dimensional

vehicle model, including four bending modes, three sloshing modes, third-

order actuator dynamics, and vehicle translation and rigid body rotation.

One of the major design problems, that of parameter uncertainty, is also

considered at length. The problems of angle of attack disturbance sensitivity

and engine deflection limits are considered indirectly through transient

response studies.

2.4 BACKGROUND THEORY

Given a linear system whose equations of motion are expressed in the state-

space form

x = Ax + Bu + G_ (2-1)

z = Hx+ v (2-2}

the quadratic performance criterion produces control such that the

functional

Exix,Xxxir+ f [xitlXzx,t,+ui?3 {t}ldt {z-3,
O

is minimized, k 3 is a continuous positive definite matrix and k 2 is a con-

tinuous non-negative definite matrix. It is shown by Schultz (Reference 4)

that this performance index is minimized with the linear control

u(t ) = -k 31B'P_ (2-4)

S i i i i ii iiii iii nln i i i i n
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where

dP _ PA - A'P + PBA31B'p - k 2 (Z-5)
dt1

P(T) = k (Z-6)

This is elaborated upon somewhat by Potter (Reference 5) who shows that the

separation principle proposed by Gunkel and Joseph (References 6 and 7) for

discrete systems also applies to corresponding continuous systems. This

separation principle states that the minimum value of the cost functional

(Equation Z-3) can be achieved by developing the control (Equation 2-4),

assuming _ -_ x, and then independently developing the least squares estima-

tion filter. It can be seen that the optimal control is a linear operation on

the state estimate, which will henceforth be written

u : a_ (z-7)

The most convenient form of least squares filtering was presented by Kalman

(Reference 8) and bears his name. His basic filter equations are

x = __ + Bu_+ K (z - H_)_ (Z-8)

K = (PH' + GC) R'l (Z-9)

!

= AP +PA' - (PH' +GC) R'I (PH' +GC) + GGG' 12-I0)

based on the assumptions that

I. The plar, t (Equation 2-I) is linear.

2. The disturbance (_) and noise (v) are white, gaussian, and of zero
mean.

The white disturbance and noise assumptions are not as restrictive as they

may seem. Gaussian stochastic processes with arbitrary spectral densities

continuous infrequenc 7 can be approximated to an arbitrary level of accuracy

7 ._,l i| ii
uii
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th
by n order Markov processes. These processes in turn can be expressed

as white disturbances passing through linear filters. The linear filtering

can be interpreted as an uncontrollable augmentation to the plant, with trans-

fer matrix A. These equations are expanded by Kumar (Reference 9) to :_

include least squares estimation of parameters for the special case of

Kalman's equations with C = 0.

Equations Z-l, Z-Z, Z-7, and 2-8 can be combined in a block diagram to

show the resulting closed-loop system, as _hown in Figure Z-1.

Figure Z-1 is supplemented with an external command channel (uc), which

for this application would be guidance commands to the plant It is interest-

ing to note that the response to u c is dependent only on A, B, and /x and is

independent of the filter. This can be shown by dropping the inputs _ and v

from Figure Z-1. The block diagram will then reduce to Figure 2-2.

Theoretically, with the gaussian and linear assumptions, Kalman filtering

contains all the information possible. However, the resulting filtering has

been limited in its use because of two basic assumptions:

1. The dimensions of the filter is the same as that of the plant.

2. It is assumed that the plant parameters contained in A, B, and G
are known exactly.

Assumption (1) leads to exorbitantly large filters for large dimensional sys-

tems such as a flexible launch vehicle. Assumpt_on (2) is somewhat unreal-

istic because the plant parameters are never exactly known. Augmentation

of the filtering for parameter identification is practical for a limited number

of parameters only. The matrices become exorbitantly l_.rge as an increas-

ing number of parameters are estimated. Y'Sxperiments with Kalman filtering

in navigation applications have shown that in many cases the plant model can

be simplified to contain only a few of the lowest frequency states, without

signific_.nt deterioration of filter performance. This experience offered the

hope that the filtering for the flexible launch vehicle application could be

simplified to dimensions practical for mechanization. It also suggested the

_lllulllll ii i iiiii ilnllllll i mmm
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Figure2-1. ClosedLoopSystemBlockDiagram
i i
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Figure2-2. SystemGuidanceCommandResponse
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following design procedure as an upper limit on what might be achieved in

terms of control simplification.

1. Define the system in state space form and determine system poles
corresponding to the various state values. Determine which poles
must be moved to achieve satisfactory stability characteristics.

2. Define a low-order plant model containing only the states whose

poles it has been determined must be moved. Develop optimal
control gains and Kalman filtering for this system.

3. Insert this filtering and control in the system.

The hoped-for result will be a minimum of coupling with the higher-order

states, with little movemert of their closed-loop poles from their open-loop

positions. In addition, it is hoped that the poles and zeros of the states

included in the filter will remain where they were positioned by the optimal

control defined for the simplified plant. Also, it is hoped that the response

characteristic would not be sensitive to differences between estimated param-

eter values in the low-order model and the corresponding parameters in the

plant. If the above procedure could be accomplished, the objections to

Kalman filtering would be completely overcome. It cannot be expected that

the procedure suggested will work exactly; however, a compromise filter

somewhere between this lower dimension limit and one of the same dimen-

sion as the plant will yield satisfactory performance; this filter will have to

be augmented to estimate only a practical number of parameters to achieve

satisfactory parameter insensitivity. The exploration of this compromise

has been the main object in this contract.

2.5 METHODS OF INVESTIGATION

The general form of the quadratic control can be simplified somewhat for

this application. The optimal control is to be applied to a launch situation,

remote in time from any guidance-critical terminal time. This allows

setting k 1 to zero and making k 2 and k 3 constant in time in the perfor-

mance index (Equation 2-3). This also allows the use of the steady-state

solution of the Riccati equation (Equation 2-5) and leads to optimal control

gains (Ix) constant in time. The assumption of a launch situation has simi-

larly allowed the use of steady-state solutions to the Kalman filter equations

,0
ii ii ii ii i m_ _m m
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(Equations 2-8, 2-9, and 2-10). (The related studies of parameter estima-

tion did not utilize this assumption. )

In reality, the plant matrixes A, B, H, A, and R change with time. It has

been assumed in this work that they change slowly enough with time so they

may be assumed constant about a particular flight time of interest, and

optimal steady-state control and filter gains prepared. This is a reasonable

approach, used extensively in the past for launch vehicle autopilot design,

which greatly reduces the demand on vehicle home control equipment. Even

in this ground-based study, the assumption has been necessary because of

the storage limitations of the IBM 7094 computer. The use of a steady-state

Kalman gain matrix may not apply, however, with the filter augmented for

parameter estimation. In this work this year, the transient solution of the

Riccati equation has been computed. (Removal of this difficulty is a subject

for future study. )

An investigator has a choice when beginning a study on quadratic control:

whether to conduct the investigation using the discrete or continuous versions

of the control and filter equations. The continuous approach was adopted for

this study primarily because experience has shown _hat pole-zero system

analysis is more useful and straightforward in continuous systems than in

discrete systems. Also, the continuous version describes the limit that is

approached as the time interval in the discrete version approaches zero.

As stated in the quoted Statement of Work, this study was oriented toward

development and evaluation of system stability. A review of available

methods of defining or determining system stability led to the conclusion

that closed-loop poles, or eigenvalues, of the system with parameters

frozen to time invariance would yield the most stability information. System

poles and step transient response studies have formed the methods of evalu-

ating systems, exclusive of the parameter estimation work. _For complete

autopilot evaluation, it is standard procedure to simulate vehicle attitude and

engine deflection response through various wind profiles or flight histories.

11
I
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Such extensive evaluation was beyond the scope of this contract, but a fairly

good idea o1 the vehicle characteristic response to wi_d, can be inferred

from vehicle response to a simple unit step wind input. For systems with

rapidly varying parameters (i. e., the parameter estimating system), stabil-

ity is a more obscure concept; pole-zero analysis loses its applicability. In

the parameter estimation system, stability is inferred from inspection of the

error signal time histories resulting from various disturbance inputs.

Both the optimal control and the Kalman filtering require the steady-state

solution of a matrix Riccati equation. A number of methods were investi-

gated but virtually all of the solutions used in the various experiments were

obtained with the Automatic Synthesis Program (ASP) (Reference 10) devel-

oped at the Research Institute of Advanced Studies.

12
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Section 3

SYSTEM DEFINITION

3. 1 SYSTEM EQUATIONS

As was intended, equations and parameter values for a hypothetical launch

vehicle system were furnished by NASA-MSFC. This information was titled

Model Specification No. 2 (unpublished). The equations listed were reduced

to the following set for the purposes of this study.

Translation

7" = -m-V _+ + m ¢- m j j j K
• _ YK(X )qKS

(3-i)
R' N'

+_ +_-VVw

Rotation

Cl Clv -Cz_ (3-z)-- _ = --9- Z - CI_'R ---9- w

.th
j sloshing mode

% __
j j j K - j

(3-3) ,,,

+ 'Sj _- 2;KYK/Xsj_K_/

1966022830-026



.th
1 bending mode

G.

Gi¢ - Z m_ Y!/X_ _Z_ - _. 13.

. bj I_ bj/ aj i iI j

G.

_ R_.j_'Yi{Xi3 ) E YK(X )nK - z_i_l i +- + vmi K m i I w

(3-4)

+___.11[SEYi(X_)+ IEY;(X_)! _ - rn'-_.l1 Emj. Sj Yi(XSj)7"Sj

- _ii SEYi(X_) +

where

_C Z

A / aYi(X ) dXGi = q_-_'. 8X
1 O

Engine/actuator

_] The above equations are arranged in order of increasing frequency of the

dominant roots and constitute the system dynamical equations. In an effort

to reduce the dimension of the system state vector, the dynamic phenomena

with break frequencies above 6 cps were discarded. This in effect gave all

the sensors the attribute of instantaneous response. It was learned from

MSFC that the equations in Model Specification No. 2 had been extracted

from Reference 11. Since this handbook derives the equations and is avail-

able for general use, the equation notation was altered slightly from that in

Model Specification No. 2 to bring it into line with this handbook.

The following assumptions were incorporated in the dynamical equations:

1. Sensor response was assumed instantaneous.

14
b
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2. Aerodynamic lift and moment coefficients were made linear with
angle of attack.

3. The angle of attack was assumed constant over the entire vehicle
surface and was referenced to rigid body attitude. This means that
vehicle bending is not included in the angle of attack determination
and that a transverse w;nd affects all stations of the vehicle simul-

taneously, rather than traveling progressively aft across the
vehicle surface.

4. Actuator dynamics are related only to engine deflection {_).

5. Longitudinal acceleration {_) is zero.

Assumption 3 masks any usefulness of forward mounting the sensors to

receive earlier indication of angle of attack. Assumption 5 causes a hRngoff

in the steady-state response to atti.'ude commands. Normally, the steady-

state attitude response of the stable, closed-loop system to attitude co:_-

mands would be unity. With Assumption 5, the response is slightly less than

unity (about 0.9).

In addition to these equations, a first-order Markov wind was added to the

system equations

wQ--- = - a V +gw (3-6)w w

In all, the system states include lateral velocity (1), rigid body rotation (2),

three sloshing modes (6), four bending modes (8), a third-order actuator (3),

and wind (1), constituting a 21-dimensional system.

Model Specification No. 2 contained sensor signal equations for an attitude

gyro, rate gyro, accelerometer, and an angle of attack meter. NASA-MSFC

personnel indicated in discussions that they were not much interested in the

angle of attack meter during this study, and it was not considered further.

The following are the sensor signal equations used.

YAG = 9 - Z Y_(XAG)T]i (3-7)i

YRG = _ " Z Y_• (XRG)6i (3-8)
1

, . , 15
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YAC = - IA_" + IgiYi(XAc)_i _ (F -reX)@+ F -mX IEiY}(XA)qi (3-9)

Equations 3-10 through 3-19 are grouped in the state-space equations, in

the same order.

FX = A X + B u + G r__ (3-10)-- pr-- pr p

Y = G)_ + DX (3-11)

where

xX_- [7@_Zs17.s1Zs27.s2Zs37.S3qlqlq2q2q3h3_Vw ]' (3-12)

Y = [YAG' YRG' YAC ]' (3-13)
dr

Bpr = [0 0... 0 Cf_0]' (3-14)

The matrixes F, Apr, C, and D are shown in Figures 3-1 through 3-3.
Equation 3-10 can be rewritten

= F'IA X + F-IB u + F-IG _ (3-15)
-- pr-- pr pr_

= AX + Bu + G_ (3-16)

Subst!_,ting Equation 3-16 into 3-11 gives

Y : [CA + D]X + CBu + CG_ (3-17)

because of zero terms in the matrixes many of the terms in Equation 3-17

drop out, leaving _"

Z = [cA+ D]X (3-IS)
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I -t_) I I YI(XsI)

1 -t_z 1 Y _(XsL)

i -tbj 1 YI(Xs_)

__.[msly _(XSl) | 1_-i roSE Y I(XSL) "_imS_ Y I(XS_ ) I _ _[SEY I(X _ )-IEY _(X _)IY_(X _)

1 1 y
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Yz(Xbl) Y _(Xbl) Y4(XSI )

Yzi×.,,z) Y3{X_z) Y4(Xsl)

Y_,(Xsfl Y j(xb3) Y4(Xs3 )

!

fix
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1966022830-031



BLANK PAGE

%

" L

f ,
l

o q

] 966022830-032



_' _R _R ZlS ZlS ZZS _'_ Z)s ;_)S nl 61

-__' :. , L-± -_Y_,_
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"" * "" 2 "ils _ "i2sZ R _R lS 2S

0 0 0 0 0 0 0

C : 0 0 0 0 0 0 0

l 0 -R A 0 0 0 0

i @R '_R Zls 2'IS Z2S _'2S

0 1 0 0 0 0 0

D : 0 0 1 0 0 0 0

b-'-X
0 0 0 0 0 0m
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0 0 0 0 0 0 0

,_ 0 0 0 0 0 0

i 0 0 0 Yl(XA ) 0 Yz(XA ) 0

Z3S 7'3S nl nl n_ n2 n3

o o -Y_(xpG) o -v_(XRG) 0 -Yg(XpC)

0 0 0 -Y_(Xp,G) 0 -Y_(XRG) 0

o o o (_)_(x_>o (_),_,xA> o

}

Figure3-3.CMatrixandDMatrix _
i

i -i . . I_-,_.,.-" _II
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

Ys(XA ) 0 Y4(X4 ) 0 0 0 0

m

G -Lj(Xpo) o o o o o

-Y_(XRG) 0 -Y_(XRG) 0 0 0 0
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y = HX (3- 19)

Equations 3-16 and 3-19 serve as the state-space representation of the

system. Because of their large dimension, it is a practical necessity to

have them prepared by a computer _,rogram.

The program listed in Appendix A was prepared to perform this task. It

takes as input a list of 96 numerical parameter values and generates the

matrixes A, B, and H. Because of the Markov wind,

G = [0 0 ... 0 l] 13-201

and need not be generated by computer program.

3. Z SYSTEM PARAMETERS

The 2 1-D system was derived for three flight conditions: 24, 80, and 155

sec. The 24-sec case represents conditions immediately after liftoff.

T = 0 sec was not used because of the irrational angle of attack and lack of

aerodynamic disturbance. This is the region where most parameter estima-

I tion will be performed. The 80-sec case represents the conditions when the

dynamic pressure is a maximum (Max-q). The 155-sec case represents

conditions just prior to burnout. These three cases represent the environ-

mental extremes in a typical launch vehicle mission. Satisfactory control

with these conditions will infer satisfactory control throughout the entire

mission with a fairly great degree of certainty.

, Model Specification No. 2 listed acceptable regions for instrument place-

ment. It is desirable for disturbance suppression to mount sensors as far

forward as possible; the attitude gyro and accelerometer were mounted at x

the avionics compartment, at Station I_0M. Since the derivatives of the

attitude gyro can be deduced by the Kalman filter, the mounting of a rate

gyro in the same area would not furnish any extra information. It therefore

was mounted further aft, at Station 80M.
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A spectral density for the wind was obtained from Bisblingoff (Reference 12)

of

2
0.06u

_(w) ¢oz + 4 x 10-6 u2 (3-21)

where u is the vehicle velocity. For the t = 24 sec case, u is 77. 1 ft/sec,

which makes Equation 3-21 equal

357
= (3-22)

_(¢o) ¢o2+ O.0238

For most of the studies, awhite noise approximation was used instead of

Equation 3-22. This was obtained by setting Omega to zero,

= I.5 x 104 (3-23)_>(0) -

and using this as the covariance matrix (Q) of the white disturbance. Although

the Markov wind capability was built into the system model, it was never

used in the study.

Table 3-1 lists the numerical values of the parameters used. The resulting

A and H matrixes are listed in Appendix B. Table 3-2 lists the correspond-

ing plant poles of these three flight conditions. These poles indicate the

plant is stable except for rigid body rotation, as is typical for a launch

vehicle of this type. These three system-state numerical solutions have

formed the plant models for most of the experiments performed. Reduced

state models have been formed by striking out the row and columns col're-

sponding to the unwanted states.

21
il .alal ..... il dl ,i, a .i . .--.i a. ..... a.al ..... ,. • .... _ - - _ "
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Table 3- 1

SYSTEM PARAMETERS (page 1 of 4)

Flight Time
Stor age Compute r

Location Symbol Symbol Z4 sec 80 sec 155 sec Units

Z
I CI N'/ Cp/Ixx -0. 0085 -0. 13089 0. 000565 I/sec

Z C2 R' 1CG/Ixx 0.363 0.4735 2. 161 I/sec 2

3 AN N' 129, i00 i,091, 391 23,253 kg/rad

4 V V 77. 1 506.9 2, _21 m/sec

5 FC P 5,300,000 5,819,805 6, 150,000 kg

6 EX X 26, 500 238,780 I,735 kg

7 ALW aw 0. 1194 O 1194 0. 1194 rad/sec

g RP R' Z,650,000 ,909,903 3,075,000 kg

Z
9 SE SE I,III I,Iii ],Iii kg-sec

I0 AM M 376,000 Z69,989 176,41Z kg-secZ/m

11 AMS(1) M S 1I,ZOO 1I,61Z 338 kg-secZ/m1

IZ AMS(2) MSz 17,400 18,400 772 kg-secZ/m

13 AMS(3) MS3 1I,170 1I,170 1I,170 kg-secZ/m

14 0 0 0

15 ALS(1) tS1 24 31.04 60. 96 m

16 ALS(Z) !SZ -I I0. IZ 42. 36 m

17 ALS(3) ! $3 -ZZ. 7 -20. 15 5.85 m
18 0 0 0

19 YPB{I) Y'I(X_) 0.0353 0.0357 0.0Z I 1/m

20 YPB(Z) Y_(X 3) 0.0447 0.0476 0.0314 I/m

2 _ YPB(3) Y_(X 3) 0.0545 0.0576 0.0509 I/m

ZZ YPB(4) Y_(X 3) 0.06Z8 0.0636 0. II01 I/m

23 YB(1) YI(X 3) I 0.929 0.958 ND

24 YB(2) Yz(X 3) I 0.905 0.938 ND

25 YB(3) Y3(X )) I 0.886 0.900 ND

26 YB(4) Y4(X 3) I 0.871 0.787 ND

27

28 Z(1) _I 0.005 0.005 0.005 ND
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Table 3-1 (pvge 2 of 4)

y,

Flight Time
Storage Computer
Location Symbol Symbol 24 sec 80 sec 155 sec Units

29 Z(2) _2 0,005 0.005 0.005 ND

30 Z(3) _3 0. 005 0. 005 0.005 ND

31 Z(4) _4 0. 005 0. 005 0.005 ND

32 W(i) w1 2.21 2. 314 2.91 rad/sec

33 W(2) _2 5.17 5.62 6.59 rad/sec

34 W(3) w3 8.79 9. 15 11.71 rad/sec

35 W(4) w4 12.46 12.49 24. 85 rad/sec

36 YXS(I I) YI(XsI ) 0.508 0.568 0.832 ND

37 YXS(I 2) Yz(XsI ) 0.356 0.409 0.747 ND

38 YXS(I 3) Y3(XsI ) 0. 168 0.264 0.589 ND

39 YXS(I 4) Y4(XsI ) 0.00115 0.14 0. II ND

40 YXS(2 I) YI(Xs2) -0.277 -0. 125 0.418 ND

41 YXS(2 2) Yz(Xs2 ) -0.438 -0.419 0. 152 ND

42 YXS(2 3) Y3(Xs2) -0.379 -0.552 -0. 318 ND

43 YXS(2 4) Y4(XSz ) -0. 116 -0.544 -1.508 ND

44 YXS(3, I) YI(Xs3 ) -0. 695 -0. 838 -0. 191 ND

45 YXS(3, 2) Yz(Xs3 ) -0.00909 -0. 171 -0.252 ND

46 YXS(3, 3) Y3(Xs3 ) 0.878 0.634 -0. 0612 ND

47 YXS(3, 4) Y4(Xs3 ) 0.855 0.873 0.629 ND

48 q 353 3,856 93 kg/m 2

49 AIE IE 3,456 3,456 3,456 kg/m/see 2

50 AIX I 0.277 x 109 0.2525 x 109 0.925 x 108 kg/m/sec 2
XX

51 ZS(I_ _SI 0.005 0.005 0.005 ND %_

52 Zg(Z) _S2 0.005 0. 005 0.005 ND

53 ZS(3) _S 3 0. 005 0. 005 0. 005 ND
54 WS(I) _ 2.32 2.76 3.58 rad/sec

S i
55 WS(2) 2.32 2.76 3.77 rad/sec

WS2

56 WS(3) 2.32 2.76 4.71 rad/sec
WS3

4

23 _ "
| . ,
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Table 3-I (page 3 of 4)

Flight Time

Storage Ccrnputer
Location Symbol Symbol 24 sec 80 sec 155 sec Units

57 YPS{1, I) Y'I(Xs 0.0356 0.0366 0.0211 l/m
1

58 YPS(I, 2) Y_(X S 0.048 0.052 0.0318 I/mI

59 YPS(I, 3) Y_(X S 0.0635 0.067 0.0519 I/m
I

60 YPS(I, 4) Y_(X S 0.0759 0.0798 0. 1117 I/m
I

61 YPS(Z, I) Y'I(Xs2 0.0278 0.0315 0.0198 I/m

62 YPS(2, 2) Y_(Xs2 0.00934 0.0228 0.0253 I/m

63 YPS(2, 3) Y_(Xs2 -0. 0324 -0. 00643 0.0319 I/m

64 YPS(2, 4) Y_(Xs2 -0.0702 -0.0487 0.0312 I/m

65 YPS(3, I) Y'I(Xs3 0.00676 0.00623 0.0114 I/m

66 YPS(3, 2) Y_(Xs3 -0. 0462 -0.0447 -0.0168 I/m

67 YPS(3, 3) Y_(Xs3 -0. 0363 -0. 0155 -0.0827 I/m

68 YPS(3, 4) Y_(Xs3 0.0514 0.128 -0. 147 I/m

69 BM(I) M 1 186,700 171,690 17,867 kg-sec2/m

70 BM(2) M 2 144,000 116,484 29,068 kg-sec2/m

7 1 BM(3) M 3 163,500 I01, 07 1 169,960 kg-sec2/m

72 BM(4) M 4 530,000 602,613 203,336 kg-sec2/m

73 G(I) G 1 0.315 28.95 0.0443 kg

74 G(Z) G 2 0. 171 4.73 0.0Ill kg

75 G(3) G3 0.423 3.49 0. 132 kg

76 G(4) G 4 -0. 1225 4.34 0.791 kg

77 YA(1) YI(XA) I.928 I.767 0.413 ND

78 YA(2) Y2(XA) 0.438 0.605 0.509 ND

79 YA(3) Y3(XA) - I.74 -0. 013 -2.76 ND

80 YA(4) Y4(XA) 4. 119 4.37 0.65 ND

81 YPRG(1) Y'I(XRG) -0. 0165 -0. 0132 0.0044 I/m

82 YPRG(2) Y_(XRG ) -0.066 -0. 0691 -0. 0396 I/m

83 YPRG(3) Y_(XRG) 0.0565 0.03104 -0.0969 I/m

84 YPRG(4) Y_(XRG) 0.217 0.236 0.'0729 I/m
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Table 3-1 (page 4 of 4)

Flight Time
Storage Computer

Location Symbol Symbol 24 sec 80 sec 155 sec Units

85 , YPMG(I) Y_I(HIG) -0. 1155 -0. 1182 -0, 0438 1/m

86 YPMG(2) Y_(HIG) 0. 142 0. 129 0.06b 1/m

87 YPMG(3) Y_(HIG) -0. 107 -0. 0702 -0. 0355 l/m

88 YPMG(4) Y_(HIG) 0.0083 0. 0052 -0. 622 1/m

89 X(89) CB -31, I0_ -31, 100 -31,000 1/see 3

90 x(90) C_ - 3,059 - 3,059 - 3,059 1/sec 2

91 X(91) C_ -23.72 -23.72 -23.72 I/sec

92 ALA r A -82.54 -79.54 -53.29 m

93 YPA(1) Y;l(XA) -0. 1155 -0. 1182 -0. 0438 1/m

94 YPA(2) Y_(XA) -0. 142 0. 129 0.066 1/m

95 YPA(3) Y_(XA) -9. 107 -0, 0702 -0. 0355 l/m

96 YPA(4) Y_(XA) 0.0083 0.0052 -0.622 I/m

Table 3-2

PLANT POLES

State Value 24 sec 80 sec 155 sec

Lateral velocity -0. 1419 +0. 0413 +0.01127

+0. 389 -0.00566 ± j0. 0257Rigid body angular +0. 069 ± j0. 079 -0. 381displacement

1st sloshing mode -0.01142 ±j2. 31 -0.0134 ±j2.741 -0.0137 ± j3.263

2nd sloshing mode -0.01296 ± j2.43 -0.0182 ± j2. 952 -0.0183 ± j3,652

3rd sloshing mode -0.01475 ±j2.64 -0.0156 ±j3.082 -0.0198 ±j3.858 _.

1st bending mode -0.0094 ±j2. 11 -0.0]29 ±j2.285 -0.0252 ±j4.906

2nd bending mode _n.0273 _-j5.36 -0.0306 ±j5.894 -0.0362 • j7.069

3rdbending mode -0.0483 ±j9. 19 -0.053 ±j9.812 -0.0586 ±j11.75 .

4thbending mode -0. 0639 -_ j12. 60 -0.0653 ±j12.72 -0. 129±j25.31

Engine dynamics -6.53 ± j53.6 -6.53 _- j53.6 -6. 53 +j53.6

Engine dynamics - 10.65 -10. 65 - 10.65

2_
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3.3 LOW ORDER STUDY MODELS

A series of system models has been used during the p:'ograrn. To reduce

coiZusion, a notation system for these models was developed as follows:

i-j

where i is an integer signifying the order of the model and j is an integer

designating the particular model. For example, model No. 4-3 is a

4-dimensional model, the third one developed• The following are the

definitions of these models•

4- 1 is an early experimental model with little relation to Model $2ecification

No. 2.

• _" 0 0 0 ,_ _ 1.221 '

1 0 0 0 9 0
' , = 4 U

0 0 -0. 0221 -4.88 _ l. Z21

. .0 0 1 0 . ._ . _ 0

• (3-24)

l = [0 1 o-o.s]x

4-2 is a model approximating the Model Specification No. 2 system at

t = 24 sec but with no coupling between the bending mode and rigid body

rotation or aerodynamic influence.

0 1 0 0 9 0 0

.. . 10.39 0 0 0 0 9 -0.363 l.l14x
' = + 15+ V

_1 0 0 0 1 111 0 0 w

_1 0 0 -4.88 -0. OZZ 1 _1 14.Z 4.08x 10"3

26
p

ql
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[lOO.1189o1= x (3-25)
YRG 0 1 0 0

4-3 is a model taken directly from Model Specification No. 2, _4-sec run,

with no coupling terms omitted.

" o 1. o o o ¢'

_l 0. 00858 0 -0.272x 10.8 -0. 1029x 10" 10
0 0 0 1.0 111

;il L o.299 o -5.66 -o.0,-34 j '_l.
(3-26)

m D

0 0

-0. 363 0. 1113 x 7.0-3
_+ v

0 0 w

-3
15.19 0. 388 x I0

o

'I

YAG I I 0 0. 1155 0I

YRG } = 0 1 0 0.0165 X (3-27)
I

/

YAC [ _14.64 0 -I0.94 0.0702
J

4-4 is a model taken directly from Model Specification No. 2, 80 aec, Run

21-2, with no coupling terms omitted. /

l •

' 9 " 0 1 * 0 0 9

0. 1309 0 -0. 657x 10 "7 -0. 259x 10"9 9 .,

_I 0 0 0 I _I
QO

_I 31.0 0 -6. 33 -0. 0249 ,lIb D _ b

27
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0 0

-3
-0.47Z 0.258 x I0

+ 6+ v %h,"
0 0

17.6 O. 0611

_ (3-z8)

I 0 0. 1182 0

Y = 0 1 0 0. 01319 X

14.02 0 -II.24 0.0736
iB

4-5 is a model taken directly from Model Specification No. 2, 155 sec, near

burnout, Run 21-3, with no coupling terms omitted.

a

I 0 I 0 0
oo

-0.565x10 -3 0 -0. 1682x10 -8 -0.339xi0 -II
Z

_I 0 0 0 I

_1 -0.0635 0 -12.54 -0.0305

_ 0 0

-Z. 16 -0. 224 x 10-6
x + 6+ VW

• 0 0
/

• -4

.___ rll 176.5 _ -0.252 x I0
13-z9)

]l I 0 0.0438 0
Y = i 0 1 0 -0.0044 _x

!

k-34. _ 0 -5.55 0. 031

28
)
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6-1 is a model the same as 4-2, but with the third bending mode added.

Coupling between rigid body rotation and the bending modes, and aerodynamic

moment are omitted.

i_ 0 I 0 0 0 0

o o o o o o

'_1 o o o 1 o o _1

_1 / 0 0 -4.88 -0.0221 0 0 fil

fi3 [ 0 0 0 0 0 1 _3

,, L0 0 0 0 -78.2 -0. 0879 .fi3

- - (3-30)
0 0

-0. 363 1. 114 10-3

o
+ _+ v

14. 2 4. 08 10 -3 w

o
16.21_ _ 5.49 x 10 -3

: X (3-31)

YRG 0 1 0 0 --

29
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6-2 is a model the same as 4-2, but the second bending mode is added. It

approximates t = 2.4 sec conditions, but coupling between the bending modes

and aerodynamic moment are omitted.

9] o 1 o o o o - 9

_l o o o o o o

_1[ : o 0 o 1 o o ,11
_1 [ 0 0 -4.88 -0.0221 0 0 {11

fizl o o o o o o ,iz
o,

rl2 ) 0 0 0 0 -26.7 -0. 0517 _12

F _ D

I 0 0
I

-0. 363 O. 1113 x 10 -30 0

+1 P+ v
14.2 O. 388 x 10 -2 w

[ o o
I
L 25.7 o. 233 x 10 -2

(3-32

YAG 1 0 0. 1155 0 - 14. 2 0

YRG = 0 1 0 0.0165 0 0.0660 x_X-

YAC _-14.64 0 -10. 94 0.0702 -13.56 -0. 1662j

3O
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6-3 is a model taken from Model Specification No. 2, t = 24 sec computer

solution, with no coupling terms omitted. It includes rigid body and first

and third bending mode statc values.

[¢ o 1 o o o o
i

0.00858 0 -0.272x10 "8 -0. 1029x10 -13 -0.959x10 -8 -0. 1023x10 -10

_1 0 0 0 1 0 0 B 1

_1 0.299 0 -5.66 -0.0234 1.277 0.266X10 -2 fill

fi3[ 0 0 0 0 0 1 _3

_31 0.466 0 -0.508 0.645 x 10 -3 -84.8 -0.0947 fi3

- o ]
I
|

-0. 363 I

I

° I+ [5 + [0 l. l13x 10 -4 0 3.88x 10 .3 0 6.09x 10-3] ' Vw
15. 19

°l
I

17.62 _1

(3-33)

n _

YAG 1 0 0. 1155 0 0. 107 0

' YRG = 0 1 0 0. 0165 0 -0. 0565 X.X

YAC -14.64 0 -i0.94 0.0'i02 140.3 0.268
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6-4 is a model taken directly from Model Specification No. 2, t = 24 sec

computer run, with no terms omitted. It includes rigid body rotation and

first and second bending mode state values.

ii 0 1 0 0 0 0 |9

- 10-10 _ 10 -10 ' .0.00858 0 -0. 272x 10 8 -0. 1029 x -0. 677x 10 -8 O. IOZ4x If

'_1[ = o o o 1. o o o ,_ql

I "_11 0.299 0 -5.66 -0. 0234 - 1. 232 -0. tZ49x 10 -2 i_ 1

;21 0 0 0 0 0 1 iq2
,. _ |,

qZJ 0.1798 0 -0.850 -0.694xi0 -3 -28.5 -0.0535 Irl2

_ L

I-o
-0. 363

0
+ p+ [0 l. ll13xlO -4 0 3.88x 10 -8 0 2.33x 10- 3]lv

15.19 w

0

20.0

(3- 34)

• YAC 1 0 0. 1155 0 -0. 142 0

i
, Y = 0 1 0 0.0165 0 0. 0660 X
i RG

YAC - 14.64 0 -I0.94 0. 0702 - 13.56 -0. 1662

6-5 is a model taken directly from Model Specification No. 2, t = 80-sec

(Max-q) computer run, with no terms omitted. It includes rigid body rota-

tion, and first and second bending mode state values.

32

1966022830-051



I

_6 0.1309 0 -0. 657x 10"7 -0, 259x 10"9 1.80Zx 10"8 -1.963x 10" lq _ -0, 47

:_1 0 0 0 1 0 0 111 D= + 13

_'1 31.0 0 -6.33 -0.0249 -1.737 - 1"868x 10"3 _1 11.6 I

_2 0 0 0 0 0 1' 112 0

_l"2 0.10 0 -1. 166 -1. 152x10 -3 -34.4 '-0.0592 _2 L2_'7/

(3-35)

'YAG} [ 1 0 0. I182 0 -0. 1293 0

YRG = I 0 1 0 0.01319 0 0.0691 X
I

' YAC I 14.0Z 0 -II.24 0.0736 -21.9 -0.1664i.. w

6-6 is a model taken directly from Model Specification No. Z, t = 155-sec

(burnout) computer run, with no terms omitted. It includes rigid body rota-

tion and first and second bending mode state values.

i 0 1 o 0 0 0 #

t _ _ lO ;

"" -0.565x I0 3 0 -0.1682x I0-8 0.339x -0.606 x I0"8 -0"767x I0"I

"_1'= 0 0 0 1 0 0 _1
-12.54 -0.0305 -7.4 -0.00317 _I1

_ 0 _ 0 6 3 5
0

_2 0 0 0 0

1 10 vl2

_2j -0. 0649 0 -2.46 -0.866x10-3 -48.1 -0. 0682 712,

q

0

-2.161
I

0

+ V w + ; 0 -0.224xI0"6 0 -0.252x10-4 0 -0.258x I0-4] Vw
176.51

0 2J _"1o5. (3- 36)

YAG] 1 0 0.0438 0 -0.066 0

' YRG _ = 0 1 0 -0. 0044 0 0.0396 X

YACJ 34.7 0 -5.55 0.031 -26.0 -0.1014

Br
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6-7 is the colored noise system model prepared. The firstfour statesare

System 4-3 and the lasttwo make up the 2-D colored noise.

m

0 1.0 0 0 0 0 9

0.00858 0 -0. 272xi0 -8 -0. i029xi0 -I0 0 0

"ql 0 0 0 1.0 0 0 "ql

_i O.299 0 -5.66 -0. 0234 0 0 _i

0 0 0 0 0 1 k

o o o o -25.o -:..o
D

0

O. 363

[ ol0 0 l.l14x10 -3 0 4.08xi0 -3 0 0 V
+ V +

14.2 w 0 0 0 0 0 25.

0

0

(3-37)

YAG 1 0 0. 1155 0 0.224 0

YRG = 0 1 0 0.0165 0 I X

YAC -14.64 0 -I0.94 0.0702 0.224 0

7-1, the seven-dimensional model, is the same as 4-2, with the third-order

actuator included. Coupling between the bending modes and angle of attack

is omitted.
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¢ 0 l 0 0 0 0 0 0

0 0 0 0 -0.363 0 0 0
I

"ql 0 0 0 1 0 0 0 111 ] 0
I

_z = 0 0 -4.88 -0.0221 14.z 0 0 ,il, + 0 u
Iii

1_ 3 0 0 0 0 1 0 i_1 0

0 o 0 0 o 0 i _ o

"_" 0 0 0 0 -0.3ZlxlOs -30s9 -z3._ i_ 0.311-105• m

(3- 38)

y : [I o o. 1189 o o o o]

II-I, 11-2, and 11-3 systems are formed by striking wind and sloshing states

out of 21-1, 21-2, and 21-3. They are not presented here because of their

large size. The remaining state vector is

I .ee I

X = [z¢_rll _ 1_2_2_3_3_4_41313t_] (3-39)

21-1, 21-2, and 21-3 models are Model Specification No. 2 systems for

t = 24 sec, 80 sec, and 155 sec. They are presented in Appendix B. Most

of the low-order models have been formed by striking out rows and columns

fro.rn these matrixes.
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Section 4

QUADRATIC OPTIMAL CONTROL

This section contains the basic equations involved in optimal control for an

arbitrary system. The root-square locus approach is considered. This

approach provides a simple way to evaluate those poles of a system which

result from certain design conslderations. Itis shown that costs may be

systematically chosen for the control and for the system states so as to

achieve some desired bandwidth and damping for each of the controlled

modes. In this particular case, the costs are chosen to attaina ratio of two

to one on the firstbending mode to the controlled rigid body mode, and to

cause the bending modes transients to die out in about the same time inter-

val as the rigid body transient.

Examples are presented where the control matrix is derived for typical

fourth-, sixth-, and seventh-order systems to achieve desired pole configu-

rations. The optimal gains for the above systems are calcul._tedat specific

points in flight(Z4 sec, maximum dynamic pressure, and burnout). While

several of the optimal gains are neath/ independent of the time of flight,some

change considerably. Switching may be required for control over the entire

flight. The switching logic may be activated by the parameter estimates, or

simply time.

The issue of controllabilityis usually discussed in parallel with optimal

control derivations. For many practical systems, including this one, the

following simple statement adequately defines controllability. Those _ttes

to which a path may be traced through the system block diagram, fronA the

control, are controllable. Wind disturbance states are therefore not con-

trollable,but allother statesinthe typicallaunch vehicle plant are controllable.

w
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4. 1 BASIC APPROACH

In order to apply quadratic optimum control to a linearized system, that

system is described by a set of n eqaations.

= Ax+ Bu (4-1)

Costs are chosen for the states of the system so as to achieve adequate

control as follows:

1. Normalize B and the cost on control.

2. Set costs on 0 by choosing a desired rigid body bar _width.

L z = (WRB)4 (4-Z)

3. Set costs for ri, 4]1, etc., by choosing a desired closed loop body
bending ratio.

_4[l-(l- z_z ,)z]BB'
Cost _ (4-3)Z Z

- (I - Z_B B)

4. Find the. left half plane roots of the Z matrix for the above
conditions.

] -
(4 -4)

Z =

A'

5. H Equation 4-4 is acceptable, adjust the costs for the denormalized
B matrix such that

38
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3 = l

L z! --

L z

(4-5)
L 4! _

L 4

ETC.

6. Find the left half plane roots of the Z matrix for the der _.'realized B
matrix using the costs in Equation 4-5.

7. If {6) is acceptable, solve the matrix Riccati equation to obtain the
steady-state gains. If P(SS) is the steady-state solution to the
Riccatiequation, the gains are

KOPT = _)._IB'P(SS) (4-6)

8. Find the roots of

[A + BKoPT] (4-7)

and check against those found in step 6 above.

The above eight steps will achieve a stable system if all s+ates are observable.

If the control is suboptimal, trial and error will determine the minimum num-

ber of states for stable suboptimal control, assuming that Kalman filtering

provided noise-free estimates of those states. .....

4. Z THE OPTIMAL CONTROL PROBLEMS, BASIC EQ'IATIONS

The goal of optimal control is to minimize the following performance index

(PI).

%

PI = fo(X'kzX + u' k3u) dt (4-8)

Care must be taken that other, more traditional indices are met (for example,

adequate damping at some desired bandwidth).

d
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The quantities which may bc varied to achieve the above goals are the relative

costs placed on the control and on the system states. The cost on control

tends to suppress the control activity, with a corresponding sacrifice in

speed of response.

The above PI is rain{real if Lhe linear control {References 1, 2) given by

u = -k;1B'l:_ (4-9}

is used. P is the solution to the matrix-Riccatiequation

I_ = -PA - A'P + PBk;1B'p - k z (4-10)

One method of solving the above is to perform a change of variables. Equa-

tion 4-10 is equivalent to

P = YX (4-II)

where

The equivalence of Equations 4-11 and 4-12 to Equation 4-10,may be demon-

strated by taking the derivative of 4-11 and substitutirg Equation 4-12 into it.

The 2nth order linear first-order differential equation (4-12) has the solution

] ]= eZ (4-13)

Ylt + r) LY(t)J

If the transition matrix is partitioned as follows

4O
- iii ii m
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ell 012]eZv = (4-14)

L°zl °zz]

it follows from Equations 4-11, 4-13, and 4-14 that

P(t + T) = [021X(t)+ 022Y(t)][011X(t)+ 012Y(t)]-I (4-15)

Equation 4-15 may be simplified, since _(t) - P(t)X(t)

P(t + T) = [021 + 022P(t)] [011 + 012P(t)]-I (4-16)

Equation 4-16 isused by the Automatic Synthesis Program (ASP) made avail-

able to Douglas for this study.

4. 3 ROOT LOCATION
0

The transient characteristic of Equation 4-10 isclearly linked with Equa-

tion 4-14. Itis reasonable, then, that the performance of the closed-loop

system, where u = Ax, is also given by Equation 4-14 when the gains (L_)

are taken from the steady-state solutionof Equation 4-16, where L_is equal

to -()_31B') times the steady-state solutionto Equation 4-10. In fact,
the

2n eigenvalues of

A  qIB1z = (4-1v)
k2 A' J

consist of n lefthalf plane roots and n righthalf plane roots reflected about

the j0_axis. The n lefthalfplane roots of Z consist of the closed-loop

roots o_

[A + BA]

j,r

...................... ,, _ .................., .............. _ 41 ,,
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This powerful fact implies that one can change any parameter (an element of

A or B), and any cost (an element of k2 or k3), and the roots of Z will indicate

the corresponding effect on the closed-loop poles of the system without having

to find the optimal gains corresponding to that condition. This fact has been

used in choosing costs.

A simple example can illustrate several points. Consider the unstable first-

order system. With zero input, one may write

= ax + bu (4-18)

If we make the cost on u = 1 and the cost on x = k 2 (the ratio of k2/k 3 is

important, not the absolute value of each), then Equation 4-17 becomes

-a b 2Z = 14-19)
a

L Z
1

Suppose we make b = 1, a = 3, k2 = -7; then

[-::]Z = (4-20)

The eigenvalues of Z are given by solving for ki which satisfy

Determinant (kI - Z) = 0 (4-21)

Thus the eigenvalues are +4 and -4. One expects the closed-loop system to

have a pole at S = 4. The verify this, the matrix Riccati equation (4-10)

at steady state requires

0 = p2 _ 6P - 7 (4-22)



This is satisfied by P = +7. Then

KOp T = -A]IB'p = -7 (4-Z3)

ZT
Or, in another way, one can show that e is given in closed form by

(I 4T 7 -4T)(I e4T 1 -4T'_e + _e [ - [e
ZT

e = (4-)-4)

7 e4T 7 -4T_/7 4T 1 -4T'

Equation 4-Z4 may be substituted in 4-16. When time approaches infinity,

one has

7 e4T 7 e4Tp(t)l[l e4T 1 e4Tp(t)] -1P(t+ T) = [_ +_ +_ = 7 (4-25)

Using either Equation 4-Z2 or 4-_5, the optimal gain is -7, indicating nega-

tive feedback. Since u = -7x, Equation 4-18 becomes

: (3 - 7)x = -4x (4-Z6)

Thus, the system has a root at S = +4, as predicted.

It is most important Lo notice that Equation 4-Z0 also has a root at -4 and that
-ZT

Equation 4-22 has a root at -1. If one should find e by mistake and sub-

stitute into Equation 4-16, one would obtain the root of P = -1 at steady state.

That would require at optimal gain of +7 and, consequently, the unstable

root at -4 as predicted by Z. Care must be taken to make the proper defi-

nition of Z when the ASP program is used.

I
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4.4 SELECTION OF THE COST RATIO

It is interesting to note that it is the ratio of the costs kz/k 3 that is important

rather than their individual values. (For a proof of the analogous statement

for stat_ estimation, see subsection 5.2, Theorem 2. )

A demonstration of the truth of this statement for the scalar case follows

from Equation 4-17. Note that when Equation 4-17 contains only scalar

quantities, the roots of Z are

I/a 2 + b 2 k2
q

As expected, Equation 4-27 depends only on the ratio of kz/k 3 for some sys-

tem defined by a and b. Thus, for simplicity, k3 can be made equal to 1,

with no loss in generality.

As outlined in subsection 4. 1, the costs are first approximated by considering

the rigid body and first bending dynamics independently. The roots of the

combined system, coupled through the control, are evaluated and compared

to the desired roots. The roots are then moved into conformance bytrial

and error adjustments on the costs.

4. 5 COST SELECTION FOR RIGID BODY STATES

Consider a system with second-order rigid body dynamics and control applied

using the states _ and $. This system equation may be written

whe r e



4. 5. 1 Results

A root square locus (Figure 4-1) was plotted to indicate the effect of changing

the cost on _ while the cost on $ is zero and the cost on control is constant.

Note for increasing cost on 0 that the damping ratio is constant but that the

bandwidth inc re as e s.

A similar plot (Figure 4-7) was made by varying the cost on $ while keeping

the cost on control and on qba constant. Note that the bandwidth remains

nearly constant but that the damping ratio increases to unity and above as

the cost on $ increases. Thus the conclusion that the cost on $ tends to fix

the damping ratio while the cost on _ tends to fix the bandwidth. If a damping

,ratio of 0. 707 is acceptable, then the cost on _ can be used to specify

bandwidth.

100' j2

COSTONoCOHTROL= l 16
COSTON0= 0
COSTONOISSHOWN Jl

FOREACHPOLEPAIR

2NDORDER

-4 -3 -2 -I

1
'jl4

16

j2

lO0

Fiswe 4-1. Closed-L_pPoles Opposedto Costf_ RigidBodyStates_ ando
withZeroCoston_, Increasin,c,Costono

d

Illnlll Illn II II, Ill , I _l I I I I, I I mm m _ mez_mmmm mmm_{mb=
Ill
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Figure4-2. Closed-LoopPolesOpposedtoCostforRigidBodyStates_and_,
ConstantCostono, IncreasingCoston

If k3 = i, then the optimal gain (Equ,_tion 4-9) for the above case is

A = [_BPII-BPI2 ] = [-K 1 -K2] (4-30)

Suppose that th: cost on _ is set at zero and the cost on _ is L 2. Then

Equation 4-10 may be written as follows for steady state (15 = 0)

i][Oo Oo][;,o][o°
Since P is symmetrical, P12 = P21" Equation 4-31 can be written as

2 2 = 0
B Pll " 2P12

(4-32)

B2p22 = L 2
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Solving Equation 4- 3 2, we obtain

BPI2 = K z =

(4-33)

BPll = Kl = B

The transfer function of _/u is easily found to be

B (4-34)

u_ = V+KI S+Kz

From Equations 4-33 and 4-34, the bandwidth and damping ratio can be found

for the closed-loop rigid body system. The closed-loop rigid body bandwidth

is

_RB = 4_-_2
or (4-35)

L z = (_ORB)4

The closed-loop rigid body damping ratio is

_RB = _f_ = 0.707_I_ (4-36)

By normalizing B to unity, note that the rigid body damping ratio is 0.707

when k3 - 1. By properly choosing L 2, the rigid body baa'.dwidth can be set

to any desired value using Equation 4-35.

| , i i i i i i i i i HI H
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4. 6 COST SELECTION FOR BODY BENDING STATES

A typical second-order body bending model is described by the following

equation.

•. Z

= + u (4-37)
0

where

if k3 = 1, then the optimal gain (Equation 4-9) for the above case is

a- [-BPII-BPIZ]- [-K3 (4-38)

Suppose that the cost on _ is equal to zero but the cost on 11 is equal to L 4.

The matrix Riccati equation (4-10) for steady state may be written as

2 2 -L 4 = 0B P12 + 2C?Pl2

(4-39)

Z Z - ZP 1 = 0B Pll + 4_C_Pll 2

The transfer function for this system is given by

1 (4-40)

= S2 + (2_ + K 3) S + (c02+ K 4)

From Equations 4-38, 4-39, and 4-40, the bandwidth and damping ratio can

be calculatrd for the typical closed-loop body bending syltem. For simplicity,

B is normalized to unity. The closed-loop body bending bandwidth is

i iii i ii i II, HI ii i ,H i im mmml
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4_OBB = + L 4 (4-41)

The closed-loop body bending damping ratio is

-z z(l---"_BB = _/ 2 + L4

Z 2
or c_4[(I - 2_2) 2 - ( 1 - Z_BB) ]

L4 = L Z Z (4-42)
(1 -2

m

Therefore, Equation 4-4Z may be used to select a cost L 4 on ,] under the con-

straints that k3 = 1 and B = 1. The corresponding bandwidth for the selected

L 4 c_n be calculated from Equation 4-41.

A root square locus (Figure 4-3) was plotted to indicate the effect of changing

the cost on 11while the cost on _ is zero and the cost on control is constant.

Note for increasing cost on _ that the damping ratio and bandwid"h both

inc re ase.

A similar plot (Figure 4-4) was made by varying the cost on _ while keeping

the cost on control and on ,ia constant. Note that the bandwidth remains

nearly constant but that the damping ratio increases to unit and above as _he

cost on _ increases. As a conclusion, a single cost on _ is sufficient to 3et

the bandwidth and damping ratios at a desired level.

4. 7 OPTIMAL CONTROL DESIGNS

Consider the equations for System 4-I. This system contains two rigid body %

modes and two body bending modes. The open-loop bending m,_de has a

frequency of 2.21 radians/sec with a damping ratio of 0.0050. It is desired

to apply control so as to achieve closed-loop poles such that the time constant

(_ e) is about 0.75 for both rigid body and body bending modes.

f
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,i

_RB = 0.7

_RB = (I/Z)(Z. 21 rad/sec) = 1.105

(4-43)

_BB = O. 3

_BB _ 2. 5

Table 4-1 indicates the actual damping ratios and bandwidths for the combined _

fourth-order system as well as root locations. Note that when L 2 = I. 5 _--Ira

and L 4 = 15 the following parameters were realized for System 4-1 by using

the steady-state gains

_RB = 0.68

WRB = 0.984

(4-44)

_BB = 0. 351

_BB = 2.51

Figure 4-5 contains a plot of the roots for System 4-1 when the cost on T] was

varied and the cost on control and on qb was a constant. This plot may be

compared with Figures 4-1 and 4-3. Note that increasing the cost on v] while

holding the cost on qbconstant has the same effect on the rigid body poles as

decreasing the cost on _b in Figure 4-1.

Note from Table 4-1 that the following parameters resulted for the denormal-

ized uncoupled fourth-order system (4-Z). _'

_RB = 0.68

_RB = 0. 923
(4,45)

_BB = O. 366

WBB = 2.73

nllllllu, ilia i iii ii1.1111 iiii ii iiiiiiiiii ii ii iii i iiinl i i inl i ii ii i iiii n i n i
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Parameters (Equation 4-45) are sufficiently close to Equation 4-43 to be

acceptable. The next application is to a coupled four-dimensional system

(4-3). This system is merely System 4-2 with all coupling included between

the rigid body states and the body bending states. The optimal steady-state

gains from System 4-2 were used in conjunction with System 4-3. Note from

Table 4-1 that the parameters changed somewhat (5 to 10%) but that the values

are still acceptable.

Actuator dynamics added to System 4-3 result in the seventh-order system

(7-1). The optimal gains for each state (4, 6, _1, 6, _, _, _) using costs

(ll, 0, 0.1, 0, 0, 0, 0)were respectively (+3.3165, +5, 9831, -0.2236,

-0.0984, -0.3085, -0.0025, -0.0001). The rigid body and body bending

parameters were

_RB = 0. 684

_0RB = 0. 948

(4-46)

_BB = 0. 360

_BB = 2.54

The actuator poles were at very nearly their open-loop values

-6, 57 4- q53.63

-I0.56

As a result of the above, one may conclude that actuator dynamics are

separable from the system's dynamics with little loss in accuracy. The

reason is, of course, that actuator singularities are far removed from the

systems natural frequencies.

,A
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Inclusion of higher bending modes is now considered. Systems 6-4, 6-5, and

6-6 include two rigid body states, two states for the first bending mode (as

in 4-2 and 4-3), and two additional states for the second bending mode.

The desired bandwidth and damping ratios for the second bending mode are

_BB2 = 0.2
(4-47)

6
COBB2

The time constant (_0) is 1.2 and therefore the second bending mode signals

will settle out faster than rigid body and first bending signals.

The costs shown in Table 4-1 were used for System 6-4. The cost L 6 was
made equal to 0.33 to be an even multiple of all other costs. Note that the

desired parameters of Equations 4-43 and 4-44 were met with reasonable

accuracy.

System 6-4 and Systems 4-2 and 4-3 refer to conditions 24 sec into flight.

The same costs were used for the sixth-order system at maximum dynamic

pressure (6-5) and at burnout (6-6). Note that sufficient damping is in

evidence for the first and second bending modes and that the rigid body

damping and bandwidth are adequate. Optimum gain changes for different

flight conditions would require selective switching of gains simply as a

function of time or as certain values of the system parameters are estimated.

d
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Section 5

STATE ESTIMATION

The primary considerations in the state estimation filter design are reduced

dimensionality, system stability, parameter insensitivity, and system

response. For this application, the general form of filter Equations 2-9

and 2-10 can be reduced to

-1
K = PH'R (5-1)

O = AP + PA' + PH'R'IHp + GQG' (5-2)

which uses the steady-state solution of the filtering. The system sensor noise

is assumed uncorrelated with the plant disturbance, i.e., C = 0. The object

' of this filtering is te approximate the performance of the systems developed

with optimal feedback gains (Section 4), using only the available sensor signal

information.

5. I SYSTEM OBSERVABILITY

An investigation was made early in the program to determine if any states

were unobservable. Such states would cause divergence of the filter Riccati

equation and frustrate any attempts to adjust their dynamic characteristics.

A necessary and sufficient condition (Reference 13) for complete observability

is that the matrix

[H*, A'H*, ... A *n'IH*]

must have rank n, where n is the dimension of the system. To determine

the observability problems which might be encountered, System 4-l was set

up in symbolic form, as shown in Figure 5-I. It includes rigid body rotation

_r

, ii i im i IH HI I nHl I II I I I I I I I III III llm_
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Figure5-1. System4-1,SymbolicVersion
o

and a single bending mode. A single attitude gyro is assumed. The state

equation can be written

, • , , m i

"o 1 o o _ o o

o o o o _ M6 _z
+ +, , : u _-_;

o o o 1 n o o
Z

;i 0 0 -¢o -Zc. fi M6 g4
ml , • ,in •

Y = [1 0 K# 0]{,p _ TI ":l}' (5-3,'_)

i

58
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Applying the observability criterion to this system, one obtains

0 1 0 0

1 O 0 O
(5-4)

0 K 9 -Z_K# _ Z(4_2 - IlK#

K¢ O - _ ZK¢ Zg_3K¢

which has a determinant equal to

4 Z

K 9

which indicates the system is completely observable unless K# is zero. This
would occur if the gyro were placed on the bending mode antinode. This will

likely hold true for the system of Model Specification No. 2 as we11, indicat-

ing all states are observable unless ali sensors are on the antinodes of a

dynamical mode.

5.2 SOME USEFUL THEOREMS

5. Z. I Theorem I

Assuming no parameter errors in the Kalman filter, the system stability

characteristics are identical with the corresponding completely observable

system

Proof: repeating Equation Z-8

= A__ + Bu + K(Z- I-I__)

discarding the sensor noise input, since it has no effect on stability,

_i= A__+ Bu + EH_. - _) (s-s)
*

I

d

KG ,_ 4,1111i iii , iii i ilrllllii ii H I I , I I _
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letting

x = x- _ (5-6)

then

x = _- _ (5.7)

substituting in Equations Z-1 and 5-5 into 5-7 and solving for

_x = (A - KH)__ + G_

which has a time solution

f: (A- KH)(_"T)GI(
(A- KH)t_ + e 7)dT (5-8)__ = e --o

but the system driving functions do not affect stability so they can be zeroed

in Equation 5-8. This leaves

= o (5.9)

Substituting Equations 5-9 and 5-6 into 5-S gives

- A_: + Bu 5-I0)

The time solution is

2 :ffeA(t'V)Budv 15-II)

0
ii i i i i i i i i i ii iiiiiiiiiii i i iii i i iii ii ii
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but, omitting the disturbance from Equation 2-1 gives

t

_x = fo eA(t'r)B-ud (5-12)

comparing Equation 5-12 to 5-11 _hows

I

_(u)= :_(u) (5-z3)

Therefore, if the system is shown as in Figure 5-2a, the identity of Equation

5-13 allows the reduction to Figure 5-2b.

It is interesting to note that the proof is not dependent on K. This K-matrix

need not be the Kalman gain matrix. However, if it is not the Iralman gain,

the filter may have some unexcited poles it: +::e right half plane.

| m

(a)

FI ER _.

4

(b) x

Figure5-2. SystemReductionbyTheorem1
i el

¢

2

, , , , ,_ , , , , , ,, , ,, , _
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5. E.Z Theorem Z

The Kalman filter is not dependent on the absolute values of the disturbance

and noise levels, but only their ratio; i. e.,

K(Q, R) = K(CQ, CR) (5- 14)

Proof: referring to Equations 5-1 and 5-Z, suppose CR is substituted for R

and CQ for Q, where C is a scalar constant that controls the scaling of Q

and R. C can be changed at will without the ratio

[cQ][cR]-I

changing. And, with these substitutions, suppose the dependent variables of

Equations 5-1 and 5-Z are P* and K*; then, these equations become

.I. AP _ ,,t. 1 OL,

O = -P"A' - + P'°H'_R'IHp _ - GCQG' (5-15) .

1 -I (5-16)
K* = P'H'_R

for a trial solution of Equation 5-15,

P - CP (5- 17)

then Equation 5-14 becomes

1
: -CPA' - ACP + CPH'_R-IHGP -

GCQG' (5-18)

To verify Equation 5-17, _ must be equal to zero. Since C is a scalar, it

can be permuted with the matrixes to give

= C[-PA' - AP + PH'R-IHp- GQG'] (5-19) -

m
u i ml i i i i i i ii i iii i i,iiii i i iiii imll i ii H HI I,H ,, III H I III HHI I IH|
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but the term in brackets is zero by Equation 5-I, so _ is zero and Equa-

tion 5-17 is verified. Substituting Equation 5-17 into 5-16

K* 1 - 1
= CPH'_ R (5-20)

* -I
K : PH'R (5-Zl)

Comparing Equation 5-Zl with 5-I shows K _ = k. Therefore the K matrix

and the filter are independent of the scale factor C and the theorem is

proved.

5. 3 A SMALL SYSTEM STUDY

To gain insight into the workings of Kalman filtering, a small plant was set

up and analyzed. (See Figure 5-3.)

Figure5-3. 4DStudySyste.n



This system was developed early in the work as an approximation of the

system at t = 24 sec. It includes rigid body rotation and the first bending

mode. Coupling terms between bendin_ and rigid body rotation and aero-

dynamic moment are omitted. A single sensor, an attitude gyro at Station

120M, is assumed. This is System 4-2,presented in subsection 3.3. Fig-

ure 5-4 shows the transient solution of a typical set of Kalman gains for this

system. The steady-state gains are plotted against the signal-to-noise

ratio in Figure 5-5.

If the control loop in Figure 2-1 is opened, the block diagram can be arranged

in the form shown in Figure 5-6.

Figure 5-16 illustrates the point that Kalman estimation is a blended com-

bination of a modeling response _X1/u and a filtered response to the sensor

signals $:2/Y" By Theorem 1 in subsection 5.2.1, the sum of the two parallel

paths, -_l/U + -_2/u must equal x/u.

00 5 10 15
t(SEC)

Figure5-4. KalmanGainTransientSolutions

64
i IIIH H H i i i H i i H i i ii ii
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Figure5-6. PlantFilterCombinationRearranged

Suppose one wishes to estimate @ in the system of Figure 5-3. Figure 5-7

shows the Bode gain and phase response curves of y@/_ and y_/_ deviation.

The Bode gain curves can be thought of as square roots of the spectral

density curves with a unity amplitude white noise disturbance (g). Bode

gains lather than spectral densities are used because phase is lost with

spectral density. Figure 5-8 shows the Bode gain and phase of the total sen-

sor signal response to _5 inputs. Figure 5-9 shows the gain and phase

response curves of the filter response to sensor signals {_2/y). Comparing

Figure 5-9 with the Bode gain in Figure 5-7 shows the filter gains are high,

when the @-signalis large compared to the _and v signals. Figures 5-10

and 5-11 show the total gain and phase for the upper and lower paths for the

low noise (Q/R = 7.5 x I0 7, slow filter) and high noise (Q/R = 7.5 x I0 5,

slow filter) cases.

Notice how in each case the model compensates for the attenuation on the

signal of the sensor filter to reconstruct the true response to command

signals.

_6
ii i i i ii lUlll i i ii i i ir ir i i i i i i iiii iiiiii i
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This system, along with the corresponding optimal gains, was also con-

sidered in closed-loop form, setting the block diagram of Figure 2-1 up as

shown in Figure 5-12.

The outside loop was broken and a root locus plot made using the Kalman

gains for Q/R = 7.5 x 10 7 . This root locus plot is shown in Figure 5-13a.

Nctice that the closed-loop poles of this system are in the same place as

those in Figure 4-5,as Theorem 2 dictates they must be.

To gain insight into the filter behavior with additional unknown states in the

plant, a second bending mode was added to the model, forming System 6-2.

The resulting root locus plot is shown in Figure 5-13b. The system is

stable but some distortion of the rigid body and second bending closed-loop

poles have taken place. Figure 5-13c is the plot for the same system but with

the sign on the second bending mode influence coefficient at the sensor

reversed. Again the system is stable. Figure 5-13d was made with a differ-

cut set of control gains, i.e.,

Figure5-12.SystemBlockDiagramRearrangedforRootLocusAnalysis

"_1 i ii i i i iii i mm •
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13 - [Z.Sl, 3.36, o, o]_ (s-zz)

which with complete observability would place the rigid body poles in the

same place as they are in 5-13a but would merely open the loop on the first

bending r-_ode. Figure 5-13d shows the result with the 4-dimensional filter.

The system is obviously unstable. In this system, putting a control gain on

the first bending mode has aided stability with respect to the neglected

state s.

5.4 FILTER DIMENSION REDUCTION

Referring to the general system state Equation 7.-1, let it be partitioned into

two coupled subsystems, the 1-system containing the portion of the plant to

be assumed by the filter and the 2-system to be neglected by the filter.

Equation 2-1 can be partitioned as follows:

= + u + _ (s- z3)
|-_z LA21 AzzJ -_z B2 - -

z = [H1 HZ]_x+Z (5-Z3a)

The block diagram of Figure 2-1 will be somewhat altered because of the

discrepancy between the plant and the plant model in the filter. This dis-

crepancy is shown in Figure 5-14.

5.4.1 High-Frequency State, Steady-State Substitution

This approach assumes one can substitute the steady-state solution for the

transient solution of the higher-order states. Inspection of the filter Bode

gain plots for the 4-dimensional study system shown in Figure 5-7 shows

that the filter cuts off the signal above the break frequency of the sc_te in

question. With this approach, it is assumed it does not matter what the

high-frequency state gain and phase plots look like above the break frequencies

of the low-frequency states. For the high-order bending modes, with their

very low damping, and for the actuator, the phase lags are approximately

74
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x U
Uc

Figure5-14.SystemBlockDiagramwithReducedOrderFilter

zero in the filter region of interest, reflecting the applicability of the steady-
state solution.

F rom

-_2 = A21-xl + A22-x2+ B2u + G2_- (5-24)

In Laplace form,

x2s = A21Xl +A22x2 + B2u+ G2_ (5-25)

_r

m
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The question of whether A2Z has an inverse has been checked. It apparently

has whenever the state response is bounded with time, or is stable. This is

true for both high-order bending modes and the engine. Substituting Equa-

tion 5-Z6 with s = 0 into Equations 5-23 and 5-Z3a gives

&-_l = Ell - AlzAzzAz
(5-z7)

[,, J _,i A2 x B2u + v (5-Z7a)z - 1- HzA_2 -- HzAzz - HzAzzGz_

The system has now been reduced to the dimension of the 1-system. Notice,

however, that _ now appears as disturbance in Equation 5-Z7 and as noise in

Equation 5-27a. Therefore, the correlation matrix C reappears

and R ruust include both _ and v cova riance s

P.- R]
The observation vector Z contains an extra term also

-1
-H2A22 B2u

The Kalrnan filter therefore takes on a slightly amended form, shown in

Figure 5-15. Because C _ 0 the general form of filter Equations 2-9 and

2-10 must be used, rather than Equations 5-I and 5-6.

This approach is very promising, but it was developed too late in the program

for experimental evaluation.

76
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H2A22"! B2

B1 - A12A22

z

A11- A12A22"1A21 l
1

I

..... H1- H2A22"1A21 i - -
I

Figure5-15.KalmanFilterwithHigh-OrderSteadyStateAssumption

5.4. Z Low-Order State Substitution, Colored Noise

The remainder of the approximations developed generally depend on the

uncoupling of the 1- and Z- portions of the system, i.e., AZ1 = AIZ = 0.

This simplifies the block diagram of Figure 5-14 to the form shown in

Figure 5-16. This approximation app_ars to be conservative for this sys-

tem if the actuator dynamics are first excluded. Once this is done the bend-

ing and sloshing modes are generally in parallel with one another with a

negligible amount of coupling between them. AIZ and AZ1 .can also be made

perfectly equal to zero by diagonalizing the system.

One means of lowering the order of the filter is to substitute a low-order

system for the Z-system, say

(5-30)
X = H_.k

d

77
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Figure5-16.SystemBlockDiagram,A21=A12=0

and then substitute this back into the 1-system. This augments the

1 - sy stem.

The constraint on this low-order approximation to the Z-system is the gain

and phase characteristics of the Yi(u) of it must approximate those of the

Z-system over the frequency range of the 1-system states. This approach

in practice has proved to be virtually equivalent to transferring a state back

into the 1-system if satisfactory performance cannot be achieved with it in

the 2-portion of the system.

A successively greater simplification is to uncouple Equation 5-30 from the

closed-ioop commands and substitute an uncorrelated noise for the

u-commands. This yields

q_
v
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which is equivalent to the filter assuming a colored or Markovnoise in the system.

This approach was tried and found to be of very little value. Once again, if

a designer is going to raise the order of the filter to include the colored

noise, he is usually much better off using the extra orders to simulate the

trouble some state values.

5.4.3 White Noise Approximation

Figure 5-16 shows the output of the 2-portion of the plant entering the sensor

signal beside the sensor white noise. If the white noise assumption in

the derivation of the Kalman gain matrix can be made to represent a signal

similar to the output of H 2, then (supposedly) the filter would reject this

signal as noise. Of the various approaches, this has been pursued the most

extensively and experimental results indicate it is quite effective.

Breaking out the system to be approximated from Figure 5-16 produces

Figure 5- 17.

Figure5-17. BlockDiagramofStatestobeRejected

° .... 7_
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Several approaches to developing a white noise approximating the spectral

characteristics of YZ have been pursued. The first approach tried was to

compute spectral density plots of Yi{_), assuming (_) was wind disturbance.

Reflection on the results of the experiments conducted with this approach

led to the speculation that, since the primary concern is stability, perhaps
/%

it would be better to compute R based on Yi(u), where u is assumed to be

white noise. This would make the filter more resistant to signals coming

around the feedback loop. This was tried with somewhat improved results.

The effort in both approaches has been to develop a white noise covariance

matrix.

"RI 1 0 0 "

R - 0 RZZ 0 (5-3Z)

0 0 R33

The R.. are set to assume a white noise with a power level approximately

equal to the power level of the Yi of the Z-system signals over the bandpass

region of the lower state values. What is achieved are relative magnitudes

between the R... One has little to go on in setting Q. Families of runs were
ll

therefore made over ranges of Q/R, holding the ratios between the Rii fixed.

In reality, the Yi, since they have many common state values, will be

correlated with one another. In an attempt to introduce the proper correla-

tion terms, a differential equation for s vstem variance was derived. Fig-

ure 5-18 snows a discrete system whose response characteristics will

approach those of the corresponding continuous system as the sampling

interval approaches zero time.

The discrete equivalent of continuous white noise with zero mean and

variance R5 (r) is R/T. The difference equation representing the system

of Figure 5-18 is

xz(K + l) = #xz(K ) + xGzrv-_TK (5-33)

80
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• Figure5-I8, EquivalentDiscreteSystemBlockDiagram

where

r(K) = a random gaussian sequence with zero mean and variance Q

T2 3
x _ • + AT + AZ-_- + ... (S-35)

now, dropping the 2-subscripts, let

__ X,(K+,)I (5-36S(K+I ) - E {X(K+l)

= _ K)+xGTj '-_, +xG-7;--.I]

_r

I • ,
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=,Eix,j,_+__[.,_(..,K,jo.,.
(5-38)

1

S(K+I ) = _SlK)_' + ¥×GQG'X' 15-39)

Substituting from Equations 5- 34 and 5- 35

2

S(K+I ) : S(K) + AS(K)T + S(K)A'T + GQG'T + OT (5-40)

Now

S(K+l ) - S(K )
v = AS(K ) + S(K)A' + CQG' + ®T (5-41)

The derivative is defined

:_ lim S(K+l)- S(K) (5-4Z)I"
T--._ O

letti:,g v approach zero in Equation 5-41 gives

= AS + SA' + GQG' (5-43)

The observation vector is defined

YZ = HZ--xZ (5-44)

82
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The desired covariance is

R = E1727_I (5-45)

= HzE{x2.x_I I H 2 (5-46)

R = H2SzH _ (5-47)

Equation 5-43 is a special case of the Riccati equation and has been solved

using the ASP computer program. This solution is substituted in Equa-

tion 5-47 for the desired covariance matrix. A number of runs have been

made using Equation 5-47 as the white noise R matrix. Huwever, it was not

realized at the time that R from Equation 5-47 represents the areas

under the spectral density curves, rather than the desired spectral levels.

The resulting R matrixes are therefore too large. A possible method of

resolving this is to solve the syste_n of Figure 5-17 in Laplace form, giving

yz(s) = C[Is- A]-IB2Gz_(s ) (5-48)

substituting to for s and multiplying by the transpc, se

(5-49)

letting

%

R = C[I - A]'IB2GzG__B_[Ito- A]"I'C ' (5-50)

and, substituting a value for ¢0 in the bandpass region of the I-system, one

has a covariance matrix (R) with approximately the correct signal levels.
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In all these white noise approximation schemes it i s difficult to approximate the

spectral levels of the signals entering the rate gyro because they are not flat before

the system fundamental break frequency is reached. All of these whir,, noise sub-

stitution attempts cause the filter to assume the presence of white sensor noise of

the approximate spectral levels as the extraneous state signals. There is no infor-

mation about the correlation between these signals and the commands, and so infor-

mationis lost. For this reason the steady-state approach of subsection 5.4. 1 may

be more effective.

: 5.4.4 Zero Noise Filtering

In reality, the instruments for measur*ng vehicle attitude, attitude rate, and accel-

eration produce almostnoise-free signals. Taking the viewpoint that the observa-

tions are absolutelynoise free allows the interpretation that the role of the Kalman

filtering is not t,_ filter out noise but rather to estimate a large number _ { states

from a smallnumber of sensor signals. However, the continuous Kalman filter

was derived using the explicit assumption that R was positive definite. If one at-

tempts the direct approach of , say, putting R-0 in the final form of Kalman equa-

tions, since the Kalman gain is
-1

K = PH'R (5-51)

it appears to blow-up if PH'_ 0.

The treatment of this situation suggested by Bryson and Johannsen was

investigated at some l_ngth. They suggest applying a linear transformation

to the state vector to form a new state vector, part of whose elements are

the sensor signals and their noise-free derivatives. These state values are

removed from the system differential equation. The derivatives of the sen-

sor signals containing white noise are used as the sensor signals.

As an illustrative example, the technique can be applied to the system at

Figure 5-I. The state equations are given by Equations 5-3 and 5-3a.

The derivatives of y are

: _+ K_ (5-53)

= M6u+ + MSu +

b
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f

_; = [0 0 - K#_oz - K#2_o] ,+ (I + K#)M 6u + [0 I 0 K#]__ (5-5J)

n

State elements can be made of y and y. Choosing the remaining two signals

a r bltra rily

x I f x I ' I 0 -K# 0 ' _ '

xz = xz , = o i o -K_ _ , (5-56)

y x3 I 0 K_ 0

. y x 4 ' 0 1 0 K_ _.

or

x = Me (5-_,_

differentiating

= Me (5-5s) .

solving for 8

0 = M'Ix (5-_9)

if the original state equation is _,.

__= A_8+ Bu + g (5-60)

one can multiply through by M m

lvi'_e = MAC + MBM + M._ (5-61)

' R
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substituting in Equations 5-58 and 5-59

= M.AM-Ix + MBu + M_ (5-62)

If this is done to Equation 5-3a, one gets

x 1 0 1 0 0 x 1 0 0 0

x 2 _°2/2 -_v -_ /2 _ x 2 1- K_ 1 -K_ _2= _ + u+

x 3 0 0 0 1 x 3 0 0 0 64

x 4 t°2/2 _to -¢°2/2 -_t0 x 4 1 + K_ 1 K_

(5-63)

since (x3) and (x2) are lrnown, Equation 5-65 can be reduced to

xz -_¢0 x2 _to x 4 -K@ _4

(5-64)

and, from Equations 5-54 and 5-56

_; : _¢o - -_- - _,, ix + M 6(1 + Kb) u+ [i K#] _J4 (5-65)

Equations 5-64 and 5-65 are in the proper form to apply Kalman filtering,

Equations Z-8, 2-9, and 2-19.

The significant point to notice about the above development is that the order

of Equation 5-64 is lower than the original system. Other studies have shown

sloshing can be removed from the 20th order system, reducing it to 14th

order. Then, by the above process, the order would be reduced, probably

to 10. The potential drawback of the approach is that the methods developed

so far to reduce the order of the filtering and to obtain parameter estimation

error insensitivity have relied upon artificial levels of white sensor noise.

The filter order reduction to 10 may solve the filter problem; this still leaves

the parameter sensitivity problem an open question. r
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5.5 CONVENTIONAL ANALYSIS TECHNIQUES

This section discusses the use of Nyquist diagrams and root location displays

in the evaluation of systems described in this report. These systems are

characterized by vector state variables and suboptimal control and sub-

optimal state estimation.

Were the methods of optimal control and optimal state estimation used, then

the motivation to Nyquist functions and root display would be of lesser

concern.

In the final analysis, there is little theoretical difference between root dis

plays and Nyquist functions, both being used to display characteristics of

the system in the frequency domain. In practice, however, each engineer's

experience leads him to expect different insights from Nyquist functions

than root displays. The term root displays (rather than root locus) is used

purposely here, in that it may be much easier to get one or several sets of

roots than a locus of roots.

5.5.1 Analysis by Nyquist Diagrams

The analysis of systems of this kind, characterized by high order and multi-

ple vector variable looping, is a challenge. There are many loop functions

to choose from. It would be desirable to break the loop and construct

Nyquist diagrams which show both the cause of the unwanted shape nf the

Nyquist plot and the cure.

in the context of this research, the cause of the unwanted shape of the

Nyquist diagram is the distortion of the ideal diagram by the presence of

the higher bending modes, whose states are not included in the state

e stimator. ,.

The cure for the undesired shape of the Nyquist plot, under the ground rules

of this research, is the alteration of the gains in the filter. Therefore, an

ideal Nyquist function would be constructed so that the effect of the higher

bending modes could be identified explicitly, and so that the effect of changes

in the filter gains would also be explicitly apparent. Because there are

. | ,_
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several of these bending modes, and their states influence the measurements

at severel transducers, and sip.ce the gain matrix has a large number of ele-

ments, it seems impossible to define an ideal Nyquist function.

Examination of the vector-matrix block diagram {Figure 5-19) will clarify

some of the difficulties. Numbers in parenthesis indicate typica] dimensions

of vectors and matrixes. As an example, consider breaking the loop in front

of the gain matrix K. There are three variables at this location, and each

of them affects the system performance and stability through six elements

of the K matrix. Apparently, to study the effect of each element of the

K matrix, one would have to develop 18 Nyquist functions.

A typical approach to Nyquist analysis for a ".onventional control system is

to study each loop through a particular transducer. Consideration of this

approach is facilitated through Figure 5-20. Figure 5-Z0 is easily derived

from Figure 5-19 by block diagram manipulations. Since the control

I

(20x l) (3× 20) (6× 3)

(20x 20) (6x 6)

(3) i H,I(S)
(3x 6)

(l x 6)

Figure5-19. Closed-LoopSystem

--A

w
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Figure5-20. ModifiedClosed-LoopSystem

matrix _ is considered fixed, it can be included in the definition of the filter(s)

acting on the transducer signals. These signals are assembled through

matrix H. Three Nyquist functions could be developed by breaking the loop

at the control and tracing a loop through each transducer. This does not

provide the insight in this case that it does in traditional design, because of

the large amount of coupling in the filter. However, the approach should

not be discarded, because it will provide interesting comparison data with

conventional de sign methods.

The approach taken in this researcz, has been to develop Nyquist functions

similar to the traditional ones. However, instead of loops being traced

through each transducer, loops are traced through the control resulting from

the estimate of each generalized coordinate and its derivative. These

Nyquist functions are thought to have more significance in this design _'

approach. Because this approach concentrates on the state spac,_ and the

state vector, it is more appropriate to develop Nyquist functions based on

the states rather than the transducer information. Unfortunately, these

functions do not expose explicitly the effect of the elements of the K matrix.

At resonance, they effectively expose the influence of the higher bending

modes on the system stability.

89
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It is particularly "nteresting to compare these Nyquist functions for the sub-

optimum control, no-filter case with those for the suboptirnum control filter

case. Of the many possible Nyquist functions, the one defined below is con-

sidered to be among the most 1 seful and has contributed to the insights

gained in this stua).

These particular Nyquist functions are clarified by examination of Fig-

ures 5-21a and 5-21c. Figure 5-21c shows the suboptimal closed loop sys-

tem. The control matrix A is expressed as two matrixes, as shown, so that

two scalar control variables, U_ and U_, are created. Their sum is, of
course, the scalar control variable U. Typical Nyquist functions

Bending = [0 0A A ] [SI- A]-IB

Rigidbody- [_ 00][SI- A]-1B
and

Total = [A] [SI- A]-IB

are plotted in Figure 5-22 and discussed in another context in subsection 5.6.

Figure 5-_-1c shows the suboptimal closed loop system with suboptimal state

estimation. Control variables similar to the previous case are developed.

Typical Nyquist functions

Bending = [0 0 A#_] [_2]

Rigid body = [A A_ 0 O] [_2]

and

Zot_l= [_%_@ [_]

90

1966022830-109



A._Aj 0 0 M ATTITUDEESTIMATE
- (4) (CC_TROL)

- KH*

c, BENDINGESTIMATE
_, UT/F

(/'c 00AT/A_ (5)

I ATTITUDE ESTIMATE

I A@A,_00I .... (6)
I

i-,-- I
I-'-'--' A I--......

d. _._ _l f.

&_A_ 00_((7) 1O00 (8)¢

I
I . . ! ° II CLOSEDLOOP CLOSEDjLOOP

L_O 0AT//__ I -- I BENDING OO&//AT} SYSTEM

,_oo

e. g. '_

@C U ' x' (9) q)C ] 0-00 '_ v

11o)
CLOSED

00 &,q&T} ESTIMATED
L " " I CLOSEDESTIMATED

LOOPSYSTEM

BENDINGLOOP _ 0 0
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where

[_] = [SI- A':"4 KH_]-I[B':_ + KH[SI- A]-IB]

are plotted for the same system as in Figure 5-23.

5.5. Z Analysis by Root Displays

The roots of the closed-loop system are readily recognized as useful data for

the evaluation of system stability and response. However, it is useful to

gain insight into the influences which determine the ultimate location of the

closed-loop roots. Design optimal control theory locates the roots implicitly,

and the theory itself gives the insight. However, suboptimal control presses

on the designer the need for hints and guidelines for his choice of the method-

ology of de sign.

The roots obtained from the functions described in this section are helpful

in producing the required insight. These functions are presented in block

diagram form in Figure 5-21.

Nuro_erical references are to the function defined by the diagram with @c as

input and the numbered variable as output. Functions (I), (2), (7), and (9)

refer exclusively to the suboptimal control system with plant states assumed

to be explicitly available. Functions (3) (4), (5), (6), (8), and (I0) are

similar to the others, but are for the combined suboptimal control and sub-

optimal state estimation. The effect of the filler can be seen implicitly in

the comparison of these functions.

Functions (I) and (Z) define poles and zeros of the plant and control. These

are comparable o Functions (5) and (6) and are in fact the same functions

described in the previous discussion of Nyquist analysis. Functions (7) and

(8) provide for a comparison of the effect of closing the bending feedback

loop and are also open-loop functions for closed-loop Functions (9) and (I0).

In these studies, most use was made of Function (I0) which, of course, pro-

vides the closed-loop roots of the closed-loop suboptimal system.
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5.5.3 A Method of System Reduction for Analysis

Attempts to apply conventional system design techniques, such as Nyquist

and root locus methods, have been largely frustrated by the presence of

large number of parallel paths at most points in the closed-loop system.

This method was wcrked out to alleviatethis problem and itis an aid to

evaluation of the stabilityof the system because of the extraneous, 2-system

states.

The method is based on the assumption that the closed-loop system can be

represented by the block diagram of Figure 5-14. Removing the input and

coupling terms AI2, AZI from this block diagram and using superposition,

Figure 5-16 can be arranged as shown in Figure 5-Z4a. Rearranging the

feedback command channel leads to Figure 5-g4b. Theorem 1 (subsec-

tion 5 I)allows the reduction from Figure 5-Z4b to 5-Z4c. This block

diagram can be rearranged to the form of Figure 5-Z4d. Itis significant

that, for the launch vehicle application, the two parallel feedback paths are

scalar.

Rewriting Figure 5-Z4d in descriptive form yields 5-24e. The system is

now in a relatively convenient form for the coupling analysis. Once the

optimal control gains have been defined, the feedback loop is defined and

can be easily estimated by hand with root locus plots. The Z-system in the

forward loop is also independent of the filtering. With three sensors, there

are three parallel forward loops to analyze to determine which sensor place-

ment is causing instability. Figure 5-Z4d shows the potential of trading H 1

against H 2 by sensor placement to achieve satisfactory stability.

5.6 FILTER DEVELOPMENT EXPERIMENTS PERFORMED

5.6. I White, Uncorrelated Noise Approach

Initially,this series of experiments involved the use of the Z0-dimensional

system as the plant. Itwas firstdecided to attempt to stabilizerigid body

rotationand suppress firstbending mode deflection. A damping ratio of

0.7 is considered to yield about optimal transient characteristics for rigid

w
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OPENLOOP IKALI/,ANSENSOR
2-SYSTEM :SIGNALFILTER

l /NOMINALCLOSEDLOOP _ t

] + _SYSTEMTRANSFERFUNCTION/

Figure5-24.AnalysisMethod- BlockDiagram(Sheet2 of2)

body rotationand control gains were tz_ereforepicked to yield this damping

ratioa-d a damped natural frequency of approximately halfthe firstbending

mode frequency (as requested in the Work Statement). Control gains were

picked to yield a damping ratio on the firstbending mode of 0.3, which

seemed ample to meeL the objective of suppressing the bending mode def!ec-

tion. Kahnan filterswere prepared using System 4-3 as the plant L_odel.

The firstseries of runs made assumed that the extraneous 3ignals were

entering through _ , as shown as the upper input in Figure 5-17. The coupling

and aerodynamic terms between rigid body r_tationand the bending terms \

were dropped and Yi/Xj spectral density asyn,ptotes were plotted. These m
asymptotes were plotted (e.g., Figures 5-Z5 and 5-26)along with the chosen

white noise spectral density levels. These levels were picked to be approxi-

mately equal to the combined power levels from the second, third, and

_r
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fourth bending modes at low frequency. The net result was a white noise

covariance matrix

i0i 3 0 0 ]

R = 10-5 0

0 5

Steady-state Kalman gains were prepared for a range of c values and are

presented in Table 5-1. The system closed-loop poles and zeros for the

transfer function 9/Vw are presented in Table 5-Z. Inspection of Table 5-Z

shows for the lowest noise filtering (C = 10-1) only the second bending mode

is unstable; as the white noise level is raised, second bending becomes less

unstable, but third and fourth bending go unstable. It is also interesting to

note that no stability problems have been encountered with sloshing.

A review of these results led to the observation that the response of the

2-system to U-commands has a greater bearing on stability than external

disturbance and the spectral levels used to define the R matrix should there-

fore be the response to a white U-input signal. Plots were made of the

asymptotes of the spectral densities of the bending mode state signals at the

three sensors. Again, it was assumed that the modes do not couple with one

another. From the three sets of spectral plots the covariance matrix

R = C 10 0

0 105

was chosen. A series of steady-state Kalrnv: gains for various values of c

was prepared and is shown in Table 5-3.

The system poles and zeros for the transfer function 4p/Vw are shcwn

in Table 5-4. Inspection of the roots in this table shows that only the second

bending n_ode is unstable in this series, something of an improvement from

the previous set.
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Table 5- 1

WIND RESPONSE KALMAN GAIN VALUES

R = C 10 -5

L 0 0 5.0 Q= 1.5x 10 4

C Kalman Gain Matrix, Transposed (K')

0.0778 0.0201 1.214 0.002 ]

10-2 0.661 43.1 20.3 1501

1.43 x 10-4 -1.735 x lO-4 -0.026 -0.00484

0.0791 0.01824 1.135 0.494 ]

I0 -I 0.716 13.63 16.65 470

1.147 x 10 -4 -2.21 x lO "4 -0.0244 -0.00594

0.0831 0.01342 0.894 0.279

I00 0.848 4.31 8.26 142.8

-2.71 x 10 -5 -1.357 x 10 -4 -0.01925 -0.00301

ioooooo o oo 1I01 0.955 1.364 1.673 42.6

1.472 x 10-4 -5.13 x 10-5 -0.00880 -4.42 x 10 -4

I 0.0955 0.00958 0.1351 0.0202 ]

102 0.961 0.438 0.264 12.60

0.250 x 10 -4 -0.320 x lO-5 -0.00282 -8.68 x lO -6

0.0969 0.00927 0.040 0.00520 ]

lO 3 0.927 0.1592 0.0729 3.32 ]-2.83 x lO "4 -2.84 x lO -5 -7.62 x lO -4 -8.33 x lO-6
i

0.0972 0.00901 0.00594 5.80 x 10-4 ]

105 0.896 0.0841 0.0472 8.24 x 10-2 ]
-2.94 x 10 -4 -2.72 x 10-5 -3.21 x lO -5 -1.007 x iO-6j

I00
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Table 5- 3

KALMAN GAINS, COMMAND RESPONSE

o ]
R - C 0 I0 0

0 0 10 5 Q = I.0

C Kalman Gain Matrix, Transposed (K')

I i. 696 7.91 53.3 266 "-]

10-5 O. 285 3.51 8.17 115.6 J8.95 x 10-5 -5.51 x 10-4 -5.88 x 10 -3 -0.01840

10-3 O. 0977 O. 1940 O. 601 4. II

1.07x i0 -5 -5.47x i0 "5 -1.638x I0-3 -1.363x lO-

I O. 511 O. 1424 I. 756 O. 985 -]

I0- 1 O. 01448 O. 00736 O. 01202 O. 1722 J-0.719x I0-6 -2.94x I0-6 -1.682x I0-4 -2.26x I0 -5

[oo oo oo oo1101 0.00245 3.56 x 10 -4 2.43 x 10 -4 6,81 x 10 -3

-3.32x 10-6 -3.80x 10 -7 -7.88x10 -6 -3.12x 10 -8

Further insight into the nature of the second mode instability can be gained

by studying the Nyquist diagrams of Figures 5-22 and 5-23, and the roots in

Figure 5-27. Figure 5-27 shows the typical location of the closed-loop sys-

tem poles of the suboptimal control, suboptimal filter system. The basic

rigid body and first bending poles, a and b, are located approximately where

they were intended. The filter poles, c, d, and e, are located as a result of

the assumed signal-to-noise ratio. Note that root c has minimal damping.

Root f is the unstable second bending mode root.

The Nyquist diagrem of Figure 5-22 indicates the stability of the rigid body

root and the phase stabilization or control of the first bending mode. The

second bending mode does not appear since in this system the desired states

102
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Figure5-27.,,Roots,Plan,t6-4wi,!hF,o.urth-OrderFi!te_r4-3
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Table 5- 5

KALMAN GAINS, 6-D FILTER

[10 -1 0 _] Filter Model 6-4

R_c[o ° 1o°o lO5j Q(u) : 1. o

C Kalman Gain Matrix, Transposed (K')

I 1.711 4.61 52.9 119.1 5.38 -51.3 ]]10-5 O. 251 4.04 6.22 137.4 4.58 84.4

4.02 x 10 -6 -9.15 x I0 -4 -0.0305 -0.0307 -0.00374 5.95 x I0 -4

[ 8 81I0 "3 0.0785 0.1863 0. 001712 4.28 0.306 5.75

-I.073 x 10 -5 -9.05 x 10 -5 -0.001806 -0.00349 -4.7S x 10 -4 0.001088

0.514 0.1427 1.705 0.860 -0.316 -0.319 ]

]I0- I O. 01349 O. 00710 O. 00409 O. 1590 O. 00265 O. 357

-7.40x I0 "6 .3.14xi0 -6 -1.512xi0 -4 -3.05x 10 -5 .2.17x I0 -5 5.73xi0 -6

0.220 0.0245 0.0907 0.01729 -0. 00591 -0. 00230 ]

]I01 0.00245 3.55xi0 "4 1.945xi0 "3 5.75x10 -3 3.24x I0 "5 5.45xi0 "3

-3.34x I0 -6 .3.84x 10 "7 .0.710 xl0 -6 _1.110x I0 "7 -I.787x 10 "7 _5.26x I0 -8

are assumed to be explicitly observable. Figure 5-23 indicates similar rigid

body and first bending mode stability but also indicates the feedback of second

bending as a result of the suboptimal estimation of first mode z nd rigid body

states. The second bending states riding through on the suboptimally esti-

mated first bending states are phase-stabilizing. The second bending states

on the optimally estimated rigid body states are destabilizing, The net result

is an unstable second mode because the filter is unable to adequately reject

the second bending states.

Because of the consistent inability to uchieve stability in the second bending

mode, the next series of filters was prepared with the second bending mode

included. The R matrix was again sized from the asymptotes of the spectral

densities. The same R matrix as in the !ast series was adopted. Table 5-5

shows the set of Kalman gains generated. Table 5-6 shows the resulting

system poles and zeros. As can be seen, this entire series of sixth-order

i

105
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filters achieves complete system stability. This allowed carrying the analysis

work of these filters to parameter sensitivity and transient response studies.

For the transient and parameter sensitivity studies the plant model was

reduced from Z0 th to 11 th order by discarding the actuator and sloshing mode

dynamics. These effects had not proven to be destabilizing in _ny of the cases

previously made. The filtering does not include these states, so there is no

danger of parameter mismatch. This order reduction of the plant made

available space on the computer for the computation of a series of transfer

functions of interest. The poles _old zeros of the transfer function _/_c are

shown in Figure 5-Z8. Vehicle rigid body rotation and engine deflections in

response to a stepwind input of 1 msec are shown in Figures 5-29 and 5-30
_m

for the four filters. System pole positions with parameter perturbations are

shown in Figures 5-31 through 5-34. Figure 5-Z9 tends to indicate that the

G = 10 and C = 1.0 autopilots are too slow for satisfactory disturbance

suppression. Figure 5-31 indicates instability from parameter mismatch for

G 10-5 This leaves the C = 10" 3= . case as the best filter of the set. From

this study, it apparently is an acceptable filter.

A very limited effort was made toward developing filtering for the t = 80

_Max-Q) and t = 155 (burnout) conditions. Noise covariance matrixes were

developed in the same manner as before and Kalman matrixes were prepared.

These Kalman gains are presented in Table 5-7. The ASP program overflowed

in the low c value runs and so only K gains for large c values were developed

and appear in Table 5-7. Figures 5-35 and 5-36 show the system closed-loop

poles and the zeros for the transfer function _/_c for the Max-Q and burnout

conditions, respectively. All of the Max-Q runs made are unstable in the

lateral velocity state (Z). The burnout runs are unstable in the third bending

mode.

5.6. Z White, Correlated Noise Approach

This approach, explained in subjection 5.3.3, forms the ,vhite noise

covariance matrix from the variance of the Z-system subjected to a white

noise u-inpx, . The 4-dimensional filter was first investigated. The 2-syste;_n

was formed by striking out the rigid body, first bending, actuator, and wind

. . . 107
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Figure5-31.ParameterMismatchStability
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Table 5-7

MAX-Q AND BURNOUT, 6-D KALMAN GAINS

R = C 0 1.4 x 10 -6 0 Filter Model = 6-5

0 0 1.7 x 103 t = 80 sec

Kalman Gain Matrix, Trans£osed (K')

0. 13 0. 256 -0.39 -4.22 - I. 04 -2.66

C = 102 26.9 40.3 -490 40.5 -277 I,375

(0.45x I0"4) tO.135 x l0-3) (-0.852 x I0-3) (-0.0025) (-0.49 x l0"3) -0.00134

C_.05 0.0046 0.854 0.0342 -0.0738 -0.039 ]

C = 104 3.32 4.18 -45 47.8 -20.6 175.7 ](0.39 x I0 "6) (0. 162 x I0-5) (-0. 238 x I0 -4 (-0.2 x I0 -4) (-0.55 x I0"5) (-0.8 x I0 -5)

0.029 0.009 0.203 0.033 -0.012 -0.004 )]

C = 106 1.82 0.774 6.02 16.? -0.59 20.6 ]

(-0.129x I0"6) (-0.24x I0-7) (.0.22x I0"5} (-0.75x I0"7) (-0.87x I0-7) (-0.117x I0-7

Burnout

l,xlO"4 o 0 ]Q(u)=l
R = C 0 1.3 x 10 -4 0 Filter Model = 6-6

0 0 2.1 x lO3]t = 155sec

1.35 0.986 29 10.1 -3.56 -44.6 ]

C = 102 4.52 18.7 -306 -897 -124 49.65 J(0.105 x I0"3) (0.775 x 10-3) (-0.008) -0.0509 -0.0036 -0.0178

I 1.24 0.694 22.3 24.5 -3.09 -17.9

C = 10 4 0.782 1.78 -29.8 -29.3 -6.31 82.5

(0.37 x 10 "6) (0. 128 x tO"4) -0.00028 -0.00086 -0. OUOI2 0.000039
k,,

C = 106 0.14 0.096 -0.48 -2.78 -0.057 8.6

(-O. 103xlO "5) (.0.195x10 "6) (.O. 15xlO "4 (.O. 12xlO "4) (-0.654x 10 "5) (O. 109xlO "5

wr
?

mlll
IIrl III IIII IIW I III I III I I I I I I I I II I I

1966022830-134



states out of the 21-d system and forming state and observation equations

with the remaining systems. Equations 5-43 and 5-44 were solved with the

ASP program to yield the R matrixes. Table 5-8 shows the developed

covariance matrixes and the Kalman gains developed from them for the 4-d

filter. Only the 24-sec case was tested for stability. This system is unstable

in the second bending mode, as was the case with the uncorrelated noise

4- dimensional filter s.

The above process was repeated for a six-dimensional filter. For these

cases, the second bending states were also removed from the 2-system

before insertion into Equations 5-43 and 5-44.

Table 5-9 presents the resulting 2-system variance matrix and the Kalman

gains developed from them. The stability studies of the system using these

Kalman gains and the corresponding optimal control gains developed in Section

3 are shown in Figures 5-37, 5-38, and 5-39. The stability problems

encountered with the uncorrelated filters are similar in these runs. For

low-noise cases, system instability in lateral velocity is encountered at Max-Q

and third bending at burnout. However, stability is achieved at all flight con-

ditions as the noise level is raised. At each flight condition, transient studies

were made for the _tate systems, and parameter perturbation studies were

made for the lowest noise stable systems. Figures 5-40 through 5-44 apply

to the near liftoff case. Figures 5-45 through 5-48 apply to the Max-Q case

(80 sec) and Figures 5-49 through 5-51 apply to the near burnout case (155

sec). The tran._ie,_ts in each case consist of the observable transient, made

assuming optimal gains operating on the states, assuming they are available,

and the filtered transient, where _he suboptimal filter is used to estimate the

state s.

The Z4-second runs, Figures 5-40, 5-41, and 5-42, are a little slow in

filtering. The stable Max-Q runs of Figures 5-45 and 5-46 are unsatisfactory

because of ripple at 1 rps. Figure 5-47 indicates the system can easily go

unstable on this pole with mis-estimation of the first bending mode influence

coefficients. This is a filter pole and ma 7 necessitate the addition of the

Z-state to the filter model. It is significant that the observable system is not

satisfactory in this case, either. The near-burnout run of Figure 5-49

15
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Table 5-9

KALMAN GAINS, CORRELATED NOISE, 6-D FILTER

t 24 sec t = 80 sec t : i55 sec

2-System _ 0291 10.04 72.7 0.0369 9.19 101.b .01934 11.5 31.3

Variance i" 6]284.; 72.7 705.000L3. 101.8 970.000]L36.7 31.3 1.1,9x10
Scale Kalman Gain Matrixes (K)

Factor Filter Model 6-4 Filter Model 6-5 Filter Model 6-6

6.97 1.13 -0.00193 3.33 1.21 -0.0004 7.43 1.63 0.00186

1.82 0.98 0.00136 -0.484 1.40 0.0025 2.303 4.33 0.0144

89.5 -12.2 -0.0569 149 -12.95 -0.0691 234 -81.7 -0.182
C = 10 -2

154 16.9 -0.104 149 23.4 -0.0962 561 -95 -0.,38

37.8 -0.92 -0.0258 62.6 -2 -0.0328 80.1 -24 -0.0827

-448 42.2 0.181 -756 59.9 0.252 -918 115 -0.196

2.62 0.027 -0.00106 3.1 0.0325 -0.00107 6.08 0.176 -0.00025

1.26 0.0252 -0.00049 2.16 0.04 -0.000726 4.91 0.371 -0.0000138

13.7 -0.321 -0.0058 24.4 -0.404 -0.0086 46.9 -6.48 -0.00517

C = I0 °

31 0.451 -0.0132 70.3 73.5 -0.025 278 1.19 -0.0285

-6.21 0.0457 0.0023 -5.05 0.063 0.00144 -2.53 -0.313 -0.00284

-59.3 1.86 0.0241 -94.8 3. n3 0.0325 -273 19 0.0108

0.544 0.00109 -0.00022 0.66 0.00117 -0.000227 1.22 0.00335 -0.000042

1136 0.00053 -0.000055 0.306 0.00083 -0.000105 0.61 0.00575 -0.0000196

1.81 -0.0027 -0.00075 5.54 -0.00014 -0.00191 10.2 -0.0912 -0.00045

C _ 102

1.04 0.018 -0.00043 4.37 0.0288 -0.00151 14.4 0.0393 -0.000673

-1.01 0.00044 0.0004 -1.37 0.00106 0.00045 -3.85 0.006 -0.000044

-1.05 0.116 0.00041 -2.33 0.186 0.00078 -9.27 1.22 0.000276

18
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Figure5-50.ParameterMismatchStability
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indicates good performance, except _, the actuator response, could benefit

from modification. Conditions are favorable at this time because of the low

aerodynamic pre s sure.

5.6. 3 Colored Noise

A brief set of experiments was undertaken to determine the advantages of

colored noise rather than white noise in the filter. Since attempts to stabilize

the system at t = 24 sec had failed with a 4-d filter, this situation was

returned to. The spectral density asymptote plots described in subsection

5.6.1 were used to develop a second-order Markov process

-zs.o -l. z5.o

[o.:24!Jilly = (5-69)

[ 224"

The 4-dimensional syste.-n (4-3) was augmented with these state values to

form System 6-7. The Kalman gains developed for this filter model are

shown in Table 5-10. The system stability studies made are shown in

Figure 5.52. The figure shows the system is again unstable in the second

bending mode. Comparing Figure 5-52 with Table 5-4, using the 4-

dimensional filter, indicates no apparent advantage of using the colored

noise.
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Table 5-10

COLORED NOISE KALMAN GAINS

Filter Model = 6-7 "10 -4 0 0

oi:4o] olo4oQZZ 0 0 I0-4

Scale
Factor Kalman Gain Matrix .'._,-)

m

0.650 0.4Z7 -0. 033

0.64Z I.18 -0. 183

I0.50 4.31 -I. 67

Qzz = 1.5
16.04 31.9 -4.89

o.551 o.z81 o.955

0.800 14.06 120.5
D m

D

" 0.Z68 0.061Z -0. 1701

0. 1091 0.41Z -I.Z96

-4 0.959 0.767 -5.51
QZZ = 1.5x10

2.69 13.26 -43.6

0.0598 0.0286 -0. 1092

0.0334 0. 327 0.541
w

i
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Figure5-52. ColoredNoiseStability
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Section 6 1

COMBINED ESTIMATION

6.I INTRODUCTION

This sectionis concerned with the problem of estimating the states and some

of the parameters (e.g., natural frequency of a bending mode) of a linear

system. The problem will be termed Combined Estimation.

The method chosen for study was Kalman filteringon an augmented state.

The results of simulations with a sixth-order plant were to show the ability

of the chosen method to estimate two parameters. Itis of particular interest

thatthis estimation was made by an augmented Kalman filterwhich repre-

sented the plant by a fourth- rather than a sixth-order model. This subop-

timalityincreased the error in state and parameter estimation by only a few

percent. Further, the plant could be stabilizedby feeding back linear com-

binations of the estimated states.

Some other methods which were found in a literature search on parameter

estimation are quasi-linearization{Reference 14) and pseudo-inverse {Ref-

erences I, 2, 15, and 16). Since the Kalman filteringwas already being

used for the state estimation part of this study, itwas decided to use the

same approach on the augmented state. These methods are capable of com-

bined estimation, as opposed to separate state estimation and parameter

estimation {or identification,as itis frequently called). {Infact, pseudo-

inverse and Kalman filteringare intimately related.) That is, an alterna-

tiveapproach to the problem is to perform the state estimation and

parameter estimation separately, but thishas not yet been pursued for the

current problem. This latterprocedure is inherently slower than combined

estimation because all errors in measurements are interpreted by the state

estimator to be caused by system disturbances changing the states, whereas

the parameter identifierinterprets these measurement errors as being

_r
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caused by parameter mismatches. The discrete identification problem was

heuristically solved via a Kalman-type filter by Lee (Reference 15), and the

continuous analog has been pursued by Douglas in another application.

Simui:_tions were conducted to simultaneously estimate four states and two

parameters of a sixth-order plant. The estimator was designed on the basis

of white ncise on the measurements of a fourth-order plant. The additional

part of the actual measurement was to be rejected by the filter as measure-

ment noise because the plant was of higher order than was assumed for the

filter design. It was derr_onstrated that a feedback gain matrix (previously

shown to stabihze the plant when operating on the actual values of the states

that are now being estimated) operating on the estimated states would stabilize

the plant. In additio_l, when there was a 50% mismatch in the in.tia] estimate

of a parameter, a good estimate was obtained just as well as in the case of a

10_0 initial mismatch. Further, a sinusoidalLy varying parameter with a

30-sec period can be tracked with a small lag.

The values of the assumed covariances on the parameter rates of change

were studied. Values too large result in undesirable initial transients in

parameter estimates; values too small result in insensitivity to estimate

errors. The values could be made small in the first few seconds to reduce

the transient and subsequently increased to improve the parameter estima-

tion sensitivity.

6.2 COMBINED ESTIMATION VIA CONTINUOUS KALMAN FILTERING

The following text discusses the method of combined estimation of states and

parameters for linear systems as essentially derived by Kopp and Orford

(Reference 17) and later by Kumar (Reference 9). However, the approach is

modified in such a way as to estimate only those parameters which are

deemed required, whereas the previous results were for estimating all of

the entries of the system dynamical matrix and control distribution matrix,

even zeros aI,d ones.

140
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The modification reduces the order of the filter model for this particular

case from 24th te 6th order and adds a term to the equations. As a further

result of the modification, the computation of the covariance matrix of the

estimation error is reduced from the solution of 300 simultaneous first-

order differential equations to just 21.

The simulated plant is the sixth-order linear system, denoted as 6-3, which

includes the attitude and two bending modes of a flexible booster (coupling of

bending modes into attitude being neglected). The model used in the Kalman

filter is for a fourth-order linear plant consisting of attitude rate and the

first bending mode, plus two unknown parameters (from the first bending

mode) which are to be estimated.

6. 2. 1 Sources of Equations

The general form of a linear dynamical system (Reference 8) is written as

= Ax + Bu + G_

for the plant dynamics, and

z = Hx+v

for the observation of the plant (these equations are discussed in Section 3,

and only a few words of terminology that will be used herein are stated); x is

called the state vector, A the dynamical matrix, B the control distribution

matrix, u the control input, and the _ (plant) disturbance (which is a white

gaussian random process). Further, H is the measurement matrix, Hx is

the measurement, v is the (measurement) noise (which is a random process),

and z is the (noisy) observation (of the plant).

This example is for a single-input, single-output system. This means that

the control input, u, and the observation, z, are both scalars. Further,

the disturbance, _, has a covariance matrix, Q, and the noise has a covari-

ance matrix, R, the latter being a scalar (i. e. , the variance of v) because

the observation is a scalar.



In addition to the foregoing plant equations for the estimation problem, there

are equations for the plant model which in theory are nearly the same as the

plant. However, since a plant has an infinite number of bending modes, an

ordinary differential equation model must be of lower order than the plant.

Tha_ is, the filter contains an assumed model of the plant dynamics. Here

we approximate the plant by using a model without the third bending mode, q3"

In the combined estimation problem, the model used in the estimation filter

is for an adjoined state vector, which is the state vector of the assumed plant

adjoined by the unknown parameters in the A and B matrixes of the assumed

plant dynamical equation. The resulting equations have the same form as the

state estimation problem. Specifically, for x a the adjoined state, the filter

equations of Kumar have the form of (Reference 9, Page 29)

" , t( (6-1)X =
a a a a

I

is the estimate of x . A discussion of the equation will follow,where Xa a

but first we will note a modification of this equation that was actually used

for the specific problem. Namely, for a lower-dimension augmented state

= ._ _ +B u+K _ (6-2)a a a a a

matrix with as many rows as there are unknown parameters (in the case of

a component being known exactly the estimate is the value itself). Also,

is the estimate of A, and ,_ is an n xn matrix, for _ an n vector

a a A + in the
which has A as its upper left partition and zeros elsewhere, a

first equation is such that the two equations would be the same when all

entries in A and B were unknown. This constitutes part of a modification

of the equations of Kumar which allows the parameter part of x a to be only

those parameters which are to be included in the combined estimation

problem.

142
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The K in either equation is called the Kalman gain; but it is not the samea

Kalman gain in both equations, and obtaining it will constitute the; final mod-

ification of Kumar's equation.

6. 2. Z Specific Equations for a Sixth-Order Example

The following subsection shows the equations to be solved for the simulation.

6. 2.2. 1 Plant Equations

The plant equations for the specific problem considered here are for a state

vector

x = _I (6-3)

a dynamical matrix

0 1 0 0 0 0

A2 1 0 0 0 0 0

0 0 0 l 0 0
A =

A41 0 -_ -2_1_ 1 0 0

0 0 0 0 0 1 _"

A6 l 0
0 0 -c_ - 2._2c_2

.... i ........ _wA _uumu_
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and a control distribution matrix

-C2

0

R'Yl(X[5)B =
nl

I

0

This plant is unstable and a feedback gain which stabilized it was included in

the simulations.

6. 2. 2.2 Estimation Equations

For the estimation equation

= ._ x + _ u+K E (6-4)
a a a a a

in the special problem being considered, we have

0 0 0 0 0

0 0 1 0 0

Oo]A = 0 ES! -2_ i¢oI 0 0 = 16-5)
a 0

0 0 0 0 0

0 0 0 0 0
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:/A

51

= 6 (6-6)_a 1

ES

_82

a- (6-7)
0 '

iol

where

R'YI(AG). Yl(X _)
$2 = (6-7)

m 1

and ES2 and ESI are the estimates of $2. and SI respectively, and

Io 11

P2

P3
K = --1 (6-8)

a R p4

P5

where

A

Pj = Pzj +P4j

_r
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The Pij's are the solutions of the matrix Riccati equation and only thP required
!

combinations are shown here in the Kalman gain, K a, in the form of pj s.

The equation for _ is determined by modifying the result of Reference 10a

(Page Z9) which is

- A+_x = +P H'R l~z
a a a a a

or, (6-9)

• +2= A +Kg
a a a a

This _ is obtained by adjoining all the entries of A and B to x. A +a a

includes components of u that are placed so as to multiply the estimated

components of B. This was obtained via the Reference 9 equation (Page ZZ),

(with notation corrected from _ to _)

x = As + f_u (6-10) '

Kumar then adjoins all the parameters from A and B to get an augmented

state vector. We adjoin only the unknown parameters and get

x = A _ +_ u (6-II)
a a a a

which corresponds to Kumar's equation.(Reference 10, Page 2Z, notation

corrected and modified)
A

£ = A+_ (6-1Z)
a a a

because he includes u in A considers all of the entries of B as
a

unknowns, i.e., as part of x
a
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The rest of the modification of Kumar's equation to get our equation is

essentially the recognition that

? + correction signal (6-13)_a = Xa

and the correction signal is of the form K _. The computation of Ka a

requires values of the covariance matrix, Pa' which are obtained as described
in subsection 6. Z. Z. 3.

Also

= 9 + 51 - Y3(AG)_3 - (_ + _1 ) (6-14)

i.e., the observation minus its estimate.

6. 2.2.3 Matrix Riccati Equation

A specific 6 x 6 case of a matrix Riccati equation is to be solved in order to

provide the terms for the Kalman gain. The general form is

_)a = "A':Pa + PaA: T - pHTR-IHaa a Pa + Qa (6-15)

= for the problem considered, we write P as
a

"Pll PlZ PI3 P14 P15 P16"

PZZ PZ3 PZ4 PZ5 P26

p = P33 P34 P35 P36 (6=16)
a P44 P45 P46

P55 P56

P66_

a,
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where the lower triangle of the matrix is not written because P isa

symmetric

'0 0-
I
I
,0 0

A ,
'0 0
!

a ,5 13, 1 16-17)
"0 0 0 0 , 0 0

I
I

0 0 0 0 , 0 0

0

H a = [1 0 1 0 0 ',,o o]
I

The way these equations were obtained is as follows. The equation for the

error in x, from Reference 10 (Page 24), is

x = _ +_ + :Bu + Gg (6-18)

where (._) = (.) minus its estimate = (.) - (?). Now, we say that the only

part of A that is unknown is S1, so that

"0 0 0 O"

A = A- £ = 0 0 0 0 (6-19)
0 0 0 0

o o gl o

and similarly for B, so that

0

0
= (6-ZO)

0

i,
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so that
', ol o" o o o o"¢ oI I
I I ww

n 0 0 0 _ 0 0 0 0 9 0I I

I I
X =
" o o, o _11+ 0 0 0 0 6 1 + 0 13+G_I I

I I _ A

, 0 , 0 S21 0 0 _1 0 61 _iI I _, , ._
If.. 11__ _ _ _o-.-,j

' 0' 0- 0 0 1

I I
I

,, o o o og2]

I

= _ 00 o o gl,+ o + o. + Gg, Lz.l, o o • gl
| I m

and noting that _ • SI can be obtained from r_ 1 put into the first matrix in
the proper place to multiply S1, and similarly for 13 • g2

" 0 O"
i

• 0 0
X "-

._. o o Sl + G_ (6-22)

_ s_
_ 1 .

Adjoining the assumed equations for SI and _2, i. e. , S1 = 0 1 and _2 = 0 2,

01 and 02 being mutually independent white random processes, we have

r o o"

0 0 ._, o o
X =

a

n l (3 sil + _a
"6 o o r o 6 sEI (6-23)

I
I "1_'!m'

o o o, o o,..J

= + _ai_:x a
q

, ., . ld,Q
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where

_a _ 01

0 2

This corresponds to Kumar's equation except that the order of the equation

has been reduced to include only the unknown parameters in A and B. The

general procedure for this should be clear from this result. ._* is con-a

structed by putting _ in the upper left corner and the estimated variables

and co21trol inputs are put in the required places in the upper right-hand

corner. It then follows from the general theory that the covariance equation

for the estimation error is to be solved using R as a scalar, and

Qa6 (t-T) : cov(O(t) , o(T)) 0

0 cov(_(t) , _(T) (6-z4)

-- coV[_a(t ) , _a(_)_

more specifically, Qa is

"_zz o Qz4 o o
0 0 0 0 0

Qa - QZ4 0 (244 0 0 (6-Z5)
0 0 0 Q55 0

0 0 0 0 Q66

6.2.2.4 Combined Estimation Equations: Summary and Block Diagrams

The general form of those equations shown in subsections 6. 2.2. 1, 6. 2.2.2,

and 6.2.2.3 is shown here together with additional equations that are

required.
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The plant equation is

= Ax + Bu + O_ (6-Z6)

From this is generated (among other things) @ and vI1.

Then

z_ Y1(AG)_ 151 = _

(b-ZT)

z = _ + 61 + Y3(AG)_-q3

and

= ¢ + 5 1 - Y3(AG)_I3 - (_ + 51 ) (6-Z8)

The estimation equations are then

_a = A _+g u+K _ (6-29)a a a a

where

K --AP HTR'I
a a a

and Pa is determined by

= A*P + p_*T . pHTR -IH p +Qa (6-30)Pa a a a & a a

Figures 6-1 to 6-3 show the block diagrams for the above-mentioned equa-

tions. A notation was adopted at a matrix multiplication block to show

which matrix was to be the operator (premultiply) and which was to be

av

| . , ,, _ 1P1
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Figure6-1. BlockDiagramforKalmanFilterforAdjoinedState

Ha
TRANSPOSE

-R'I

oa D' - IN !!Na!"'- _, J _ a,_

Figure6-2. BlockDiagramforSolvingMatrixRiccatiEquationforCovarianceofEstimationError
ii I
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i i

4 liu -- PLANT MEASUREMENT xa
WITHADDITIVE ESTIMATOR
NOISE

i

V_

Pa

COVARIANCE
OFSTATE
ESTIMATION
ERROR

Figure6-3. BlockDiagramforSimulationof CombinedEstimationEquations

operated on. The arrowhead inside of the box indicates the operator. For

example, in Figure 6-Z, R'I is an input which becomes an operator on H a

to yield R'IH a.

6. 3 SIMULATION OF COMBINED ESTIMATION; SIXTH-ORDER PLANT
WITH TWO UNKNOWN PARAMETERS

Several simulation experLments were made with the sixth-order plant which

has just been discussed. The two unknown parameters to be estimated

are the influence coefficient and the natural frequency of the first bending _"

mode. The purpose of these experiments was to establish the behavior oJ

the combined estimator when the states of the third bending were allowed

to influence the attitude measurement but were not included in the filter

model.

i
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The major variables studied in the experiments were: the noise-to-signal

covariance ratio, the effects of parameter mismatch, and paramete: track-

ing ability. For convenience, plant activity was created through the intro-

duction of two sinusoids of differing frequencies. A more realistic but less

convenient input would have been a noise spectrum which induced plant
!

activity that is representative of that created by wind and command distur-

bances expected in a mission.

: Some type of excitation must be included in simulations; otherwise, the

state estimates would remain zero and no parameter estimation could be

conducted. Further, the excitation must be of a type which excites states

in a frequency range affected by the parameters which are to be estimated.

For example, consider the case of estimating the natural frequency and gain

of a second-order system. With a Bode plot in mind, it is seen that a sinuo

soidal excitation at one frequency gives only enough information to either

estimate the gain or natural frequency, but not both. Even two sinusoidal

inputs at a low frequency {with respect to the natural frequency) cannot give

information to estimate the natural frequency. There must be excitation at a

frequency in the range of the natural frequency and also in at least at one or.her

frequency. Also, if a real systemwere such that wind and normal autopilot

excitations did not excite the required frequencies for parameter estimation,

then an artificial excitation would have to be included in the system. That is,

parameter estimation requires inputs at certain frequencies and in that way

is more difficultthan state estimation. The frequency requirement of the

input is not just a characteristic of using Kalm&u filtering but is a basic

requirement of any parameter estimation technique.

6. 3. 1 Numerical Data

In order that the measurement coefficient on the first bending mode could be

estimated, the assumed model used in the Kalman filter was taken to have

)T
the state modified from 1_, _, vii, _1 to 1_, _, 51, il)T, where 51 is
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defined as the produce of the coefficien_ of BI in the measurement matrix

with rtl itself. The state portion of the oynamical matrix is then

0 I 0 0

A21 0 0 0
state portion of A =a 0 0 0 0

A41 0 A43 A44

%vhere

A21 = 0.00858

A41 = (0.299) 0. 1155 (nominal)

A43 = -5.66 (nominal) =- SI

A44 = -0.234

and the state portion of the control distribution matrix is

0

' B2
state uortion orb =

a 0

B4

where

B2 = 0.363

B4 = 15.19 • 0. I155 (nominal) _ $2
¢

and then the state portion of the augmented measurement matrix is

state portion of Ha = [l 0 10] _

The combined estimaticn problem for this sixth-order plant with two unknown

parameters and an assumed plant model of fourth order was simulated for
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various combinations, of Qa _'nd R. The simulations were begun with the

following Qa:

Q22 = 1.865 x l0 -4

QZ4 = Q42 = 6. 99 x 10 .3

-1
Q44 = Z. 5x 10

-I
Q55 = 2.5x I0

Q66 = 2.85 x 10-2

and all other entries zero. These will be termed nominal values and were

computcd from

QS = GQ G T (6-31)
a v

whe r e
!

o,
and

Q : 1.5x 104
V

and

Q55 = [10%of nominalS1] 2

Q66 = [lO%ofnominalS_Z
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and

Qs 0 0
a

Q = o Q55 o
a

' 0 Q66O,

Itwas subsequently realized that055 and Q66 should have been divided by the

computing intervalused in the digitalsimulation. The value of R in the
-4

estimation equations was firstselected to be l0 . This value was selected

because itwas approximately the level of the spectral density of the third

bending mode.

The system had a feedback gain matrix of

[3.22 , 5.68 , -0.264 , -0.737 , 0 , O]

operating on R .a

All reported simulations were for no actual input disturbances of measure-

ment noise but for a sinusoidal dither signals of I.1 and 3.3 rad/sec and

0.0Z degree of _ amplitude. A disturbance on *.hissystem would help the

estimation. A noise on the measurements will slow the parameter estima-

tionprocess because there will not be as much information in the measure-

ment and, consequently, the gains corresponding to the parameters must be

reduced.

6.3.Z SimulationResults

The results £or nominal Qa showed the parameter estimate to be insensitive

to parameter errors. When runs wer_ made for no mismatch of parameters,

the state estimates were within 0. l_0,for q and Z_ for Vll.

The values of Q55 and Q66 were subsequently changed by 8 and I0 orders of

magnitude in order to obtain sensitivityof the parameter estimates. In order

to observe the amount of sensitivity,Sl was varied sinusoidally (wi_.ha
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period of I0 sec and I0_0 of nominal amplitude). The results of simulations

for this Qa and for R iz,creased by two and three orders of magnitude are

sh¢_wn in Figures 6-4 and 6-5. These illustrations show that the results were

essentially the same for the two values of R. Secondly, they show that the

state estimates were not as good as when the parameter estimates were

insensitive to parameter errors. Figures 6-4 and 6-5 also show that the

parameter estimates have oscillations of approximately 25_o around their

nominal values.

When the values of Q55 and Q66 were subsequently set to 0, which is the

case of state estimation only, the resulting errors in @ and _]l were approx-

imately 2_ of their nlaximum values, as shown in Figure 6-6, and itwas then

concluded that the effect of parameter estimation is to increase the state

estimation error. However, it is pointed out that the time history of the

error in _b is quite different for this combined estimation simulation than

for state estimation, which is seen by comparison of Figure 6-5 to Figure

6-6. This large difference in the type of time history was found to be caused

by the sinusoidal excitation of parameter S1, by making this same simula-

tion except without the third bending mode and with and without the sinusoidal ."

excitation of parameter S1, as shown in Figures 6-7 and 6-8. Increasing the

values of Q55 and Q66 two more orders of magnitude resulted in smaller

errors in the estimates of the states but larger transients in the estimates

of the parameters.

The effect of the third bending is to increase the error in the estimate of _b

and _ll and also to add an oscillation on the estimate of Ti1. However, these

latter oscillations were usually less than 4_0 of the maximum value. The

effect of the third bending on parameter S1 was to increase the error in its

estimate, but this error was reduced to less than 5%after 10 sec, following

transients to about 40% during the fir,ct few seconds. This large transient

can be reduced by lowering the value of Q55.
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Figure6.4. NominalQa,ExceptQ55- 2.5× 107andQ66=2.85×108,R. 10-2$1Sinusoid;
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tl with10- SecPeriodand10%of NominalAmplitude
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Figure6-6. NominalQa,ExceptQ55- 066- O,R. 10"1,S1Constant
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Subsequent runs were made with all entries of Qa except Q55 and Q66 set

equal to zero. This corresponds to the case of measurement error being

attributed entirely to the parameter errors. Simulations were made for the

following cases:

1. With and without the third bending mode.

2. Mismatched initial value for S1 estimate, S1 varying sinusoidally
w;th an amplitude of 10% of its nominal value and a 30-sec period,

and S1 remaining constant with its estimate set initially to that
value.

When there was no third bending, the errors in the estimates of states were

negligible, as shown in Figure 6-9. When the initial value of SI was mis-

matched by 10_ (Figure 6-10), the error in _b and Tll remained small and
the error in S1 decreased to l_oin 3.5 sec. The error in $2 remained

negligible. The addition of the sinusoidally varying S1 resulted in its esti-

mate varying sinusoidally with a small time lag (corresponding to 35 to

45 degrees). It was interesting to note that, in this latter case, the estimate

of S1 had a carrier-type frequency superimposed on it which was at 2.2

rad/sec. It was concluded that the 2.2 rad/sec is caused by the beat fre-

quency between the two input dither signals, which are 3.3 and 1. 1 rad/sec.

The addition of third bending resulted in large initial transients in the esti-

mate of S1. The transients were reduced to less than 3_0after 13 sec. The

error ip the estimate of $2 was similar. However, the state estimates

were kept to within a 2_0 error. Mismatching the initial condition on the

estimate of S1 by 10g0 and 50_o gave essentially the same results. It is

concluded that initial parameter mismatches are no problem. Also, it is

expected that these initial transients can be reduced by decreasing the values

of Q55 and Q66. They can subsequently be increased to improve the param-

eter estimation sensitivity.

A simulation was made without the computer card which generated _]1' and

the result, shown in Figure 6-11, was that the estimate of $2 was approxi-

mately zero. This. is exactly what one would expect in such a case, because

$2 is proportional to the gain in the first bending mode, and if there is no

bending mode, that gain is zero.
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_+.ooox+ùo+ ............. !+++J........... !'+'"' + ..... + +_

+ ...... +++++,++++ .... + +._ +,........ ; +++ :-;;I;;;1[; .... * ;:"+'+-+'"_+' _i;_ ++; -+,+.+.;+ ++
,,. ,.. +, , ++ '+ .++++++. i +*++

+++" +'++'+I +++t+"'++*++......+..... i++ +,+.+. . +,,+ ......... +;i
.,+ +,, ,,, +++, +++ ++,] . i +++,+++, -+-++-,.4++- -
++_ +t I + ¢+._. . + J + _ +: +, .+ + + +

...... ++"++ .... +i+l.... ;++ +;++++.... ' ++_+'+;....*........... + ....... ;+' ;41 4++-.i, ........ +-+
.... + + + , . , +. + + _ + +*+ +I +1 +i + +: ,+_. _-_ +_+++ + _+_ ee++ +.+_

-_"O00XlO-09 ..... ' "" _ +++ '' +' + ++ I + ,+ ]i +, +'+ +'4! +++ ++'+i"++-t i++

+ ' + + + _ _ ** + + * + + ++*4 + +++++ + +++t ++'+_ _Pf+ *_+' ++t -,I+*j

....... +++ +++ "+* ++'+I +++_++' ''+ +IS+'*+ . + ++! +++t "++..... • *,i + ,, + + * +; , ++++ ++, , ,++ + +, +t+ ++g +++ ;++

+ + + + + + + + + + + + + + t , <+]_ _*J i+ +i++, + + <* + + #++ + + ++ , ++++ •............. + ..... + ++I.... ++i ::: "+++_+++:+++'++:++...... +,. ++. ,++ ..+ ii+| +,+ +++, +++ ++, +++ +
- - • * + + + * * * _ + _++ ++l++ +- �à*Ø�4�++++++_+++ 4 <+-_ +.p + +*

I ,-. ,., ++++.+. ++............... ,+ I++++ +.:+++ ++_.... +
_i .OOOllO .09 +.+ +,+ **+ ,++_+++ + ++e+ +++ +++ 1-++++_+ -.:_': :+'+ :+; +++ t::. ; ...... ";_ "_+t +_ _1:

...... + .... * '+ ..... t++++.+ ++-.+ _'4_++++ .... ++_ ++ ++ + * + + *+ + *'_ *t ++ +_ ++ ++_++t <' + * +-+++ ++++,I- +++,+ +-+- _ ++_ 4+

............ + ++., .++ +,;++t+ ++.+ +++ ,+.+ .... ,++++ +
• *, ++*, * + + +_++ *++, ++++ +++ .; 1,1 + + t + ++ ++,_, +_ +++ + e-+ .+-+ 4 +_

-:: +++++::+: +;+ +++; ;:+ _++._+:,+:: ::,+ .... ,+:,+ ]+._i::++ :........ , ......... ,+, ,+,,l++l +,, ++:+_+++........
tt T+++.... +++ +++ �*+ ' f f'' *+ + + '_++ *P_P+ ?++I ++_+++ i,

"" "'+ ...... +"+"_t +'+++' ++' +++t +t '++-"++":+_+++ ++++i ,++ +++ ++..+++ ++ +LI+4 + _+ ++I* i++ +++++ +44++++++

+" Tlm_ ;N SF__'+.
i

166
i

1966022830-205





t i

i

1966022830-207



1966022830-208



i i i i i i HI I

1966022830-209



i Figure6-11. Q55= 5.x107,_6 = 4.x106,All OtherEntriesof QaAreZero,
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Section 7

COMPUTATIONAL PROBLEMS

The major difficulties encountered in performance of this study have been

involved with cornpter operations. This chapter describes these difficulties

and the methods developed to avoid them.

7.1 SOLUTION OF THE RICCATI EQUATION

This equation expressed in the genera] form

1

+ PA + AP + PBP = C (7-I)

appears in the solutions of quadratic optimal control gains, the Kalman

filter gain matrix, and system covariance matrixes. P, A, G, and Q are

n x n matrixes. The matrixPis positive-definite and symmetric. It can be

seen by inspection that this equation is nonlinear.

The question can be raised as to how long a time must the transient solution

be run before the equilibrium condition for P is reached. Potter (Reference 5)

has shown that the Ricatti equation will be at least as well-damped as the

original system with transfer matrix A.

7. 1. 1 Solution by Direct Integration

The most direct method of solution involves simple integration of Equation

7-1. This can be costly from a computing standpoint unless an integration

scheme using a variable integration time is utilized. Another potential pit- _

fall can occur ifthetransient solution of Equation 7-1 carries P to a

nonpositive-definition condition. If this occurs, the equation may act in an

unstable mode and diverge. This problem can be avoided by carefully

picking P(o) or by utilizing a method suggested by Reference 17. The dis-

crete version of Equation 7-1 is used. The recursion equations are set up

to solve for _ and then this term is squared and positive definiteness is

ensured for P, which ensures stable transient behavior.

_r
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7. 1.2 Solution by Linear Substitution (ASP Program)

If two vectors, Y and Z, are defined such that

it can be shown by direct substitution into Equation 7-1 that

P = Z y-I (7-3)

Equation 7-2 is linear and has a solution

[:
Z (t + T) Z (t) .

"(7-4)

= eZl ezzJ z (t)

Then, by substitution

-1

P (t+i-)= [eZl + ezz p (t)][{}11+ elZ P (t)l (7-5)

This is the method used by the ASP program for solving Riccati equations.

The matrix

-A' _ ST= e
e

I"//'I
_ II l ............................................... I I nl llll Ullll II lllIHlllll, l lllll II Ill l
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is solved by Taylor series expansion

sT ¢sz_ 2e = I + (ST) + + ... (7-7)

The ASP program uses the first 36 terms of this series. In order to cal-

culate e ST to n-digit accuracy, the criterion 100

(llsll r) 36
< I0"n (7-8)

should be satisfied, where IIs l{is the largest term in the S matrix.

Typically, one needs four-place accuracy. In this case, Equation 7-8 yields

the criterion

10
r < _ (7-8a)

for the computing interval.

The setting of 1" may satisfy Equation 7-8a for proper series convergence

but may encounter computer overflow problems (J Sij v I> 1038) which might

make a usable 1- prohibitively short. This problem can be alleviated by proper

balancing of the terms in the S matrix. The terms can be adjusted by using

the facts that the optimal control is only dependent on the ratios between the

costs and that the Kalman filtering is only dependent on the ratio between the

disturbance and noise covariance matrixes. The absolute values of the cost

matrixes or covariance matrixes can therefore be scaled larger or smaller

to minimize the larger terms in S. _"

Once a satisfactorily small r is chosen and Equation 7-6 is computed, the

solution for larger values of z can be computed using the identity

s (sT) {eST)Ne = (7-9)

................. : ......................... ,.................. 171
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which can be costly from a computing standpoint and is subject to round-off

error. Both these problems can be reduced by using the recursion routine

Q(K+I) : Q(K) Q(K) (7- 10)

I

whe re

ST
Q(1) = e

until ZK is in the neighborhood of N.

The ASP program has several drawbacks that reduce its effectiveness.

These are

1. Poor program documentation.

Z. No reference-case setup.

3. Machine language coding.

To eliminate these drawbacks, the method of solution was coded as a

FORTRAN IV subroutine. (This subroutine is presented in Appendix A. )

7. 1.3 Solution by the Newton-Raphson Method

For most of the studies made, only the steady-state solution of Riccati

equations are of interest; Equation 7-1 can therefore be reduced to the

algebraic equation

0 = -PA-A'P + PBP+ C (7-II)

or

0 = f (P) (7-1Z)

equations of this type can often be solved for by the recursion relationship

-1

PIK) = PIK-1) - JIK-1) f(PK-l) 17-131

Z"
i i
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where

Jijmn = apron

Bellman and Kalaba (Reference 18) show that this equation will be rapidly

(quadratically)convergent to the solution ifitis convergent at all. '_

The Jacobian has a general solutionwhich can be derived in the following

manner; the coefficientsof f(P)have the general form

K K LK

the general partialderivative can be written

8
afij

K K i
•

+ _PjL aParnn (PiK BKL) (7-15)
L

K L

which has the following solutions

afij = 0
8PMn ;.

"L

W+

c)fij = _ ++8Pmn " Anj + PjK BnK ' i = m , j ,_ mK
+t

= " Ani + PiK BKn ' i ,, m , j = m

8 Pmn K

i iiiii

1966022830-216



afij _ A - A + _ + i j m8P ni nj (PiK BKn PjK GnK) ' ' =
mn K

Since P is symmetric, it is likely that linear dependence would occur in

Equation 7-13. To avoid this and to save computer space, P is rearranged

from an IN X N] matrix to an [n] IN + 1]/2 - order vector in the computer

subroutine developed. All the terms below the major diagonal in the

P matrix and the corresponding terms in the Jacobian are discarded in this

process. The FORTRAN IV subroutine developed which use the matrixes A,

B, C and Po to solve Equation 7-11 is presented in Appendix A. The system

order (N) is limited to about 15 if used wlth an IBM (7094) computer with a

32, 000-word memory book. This is due to the Jacobian (J) which takes

[N(N +1)/2] 2 stor_.ge spaces.

From a practical standpoint, this routine has not proved to be very useful;

it worked successfully with a Z-dimensional test case and converged very

rapidly, achieving 5-digit accuracy in 6 iterations of Equation 7-13. The

solution of Kalman gains for System 4-2 was then attemped. In this case the

method failed because the Jacobian (J) was too empty to have an inverse.

When a second sensor, a rate gyro, was included, the Jacobian had an inverse

but the method failed to iterate to a steady-state solution in all the attempts

made. Apparently the method is convergent only in a very small neighbor-

hood in P space.

7.2 SYSTEM POLE-ZERO SOLUTION

A basic method of system evaluation during this study has been based on

system transfer function pole-zero evaluation. Considerable difficulty was

encountered in calculating these roots from state equations. This sub-

section describeo the computational methods investigated and the resulting

performance achieved with each.

|74
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Conventionally, the transfer function of a system is expressed

K(S+ Zi)(S+ Zz) ...
Y = (7-16)
u (S + Pi) (S + P2) IS + Pu ) ...

where

u = scalar input function

y = scalar output function

K = transfer function gain

Z. = ith transfer function zero
1

Pi = ith transfer function pole

S = Laplace operator

This transfer function can also be expressed in the state-space form

= Ax+ Bu (7-17)

y = c_x (7-18)

whe re

= the N-dimensional state vectorx

A = NXN transfer matrix

B = an NXI colurrm-matrix

C = A IXN row-matrix

U = scalar driving function

y = scalar output function

The system has generally been expressed in the state-space .form of

Equations 7-17 and 7-18 during the study. Since the transfer function is

defined in either way, it foUows that the desired roots in Equation 7-16 can

be determined from the matrixes A, B, and C.



7.2. 1 Recursioz, Equation Solution

This method, presented by Zadeh and Desoer (Reference 13) is by far the

simplest method of root determination. The transfer equation polynomial is

found by the following recursion equations

0

Q1 = I (7- 19)

1
bn = ntr [AQn] n . 1 , 2 ...K (7-20)

+ b I n = 1 , Z K-1 (7-21)Qn+l = AQn n "'"

QK+I = 0 , a check (7-22)

The final transfer function E£uation 7-1(; J._
I

Y = CQ 1 B Sk'l + CQ 2 B Sk-2 + ... CQkB (7-23)

u Sk + bl Sk-1 + ... bi:

The polynomials can be factored by Lin's metho:t to obta_ the poles and

zeros. The subroutine utilizing this method called TRAFN, (Transfer

Function) is presented in Appendix A. It is coded i:_ d_._ub!e precision. It

was found that three-digit accuracy cannot be achieve-.l in the roots derived

for systems above eighth-order and therefore this subroutine was of very

little value for this study.

i

7.2. 2 Solution by Eigenvalues

If one takes the Laplace transform of Equation 7-17, one gets

x s = A__+ Bu(s) (7-z4)

76
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cc, llecting terms

[Is - A]x = + B u(s) (7-ZS)

and solving for x

x = + [Is - A] -1 B (7-26) _,U

and

[I s - A] I

Y = Cadj[l s - A] Bu (7-27)

it is clear that the denominator of Equatior: - 16 must be the solution to the

deter,.ninent IIs - A I , but the roots of the polynominal I ls - A i are the

eigenvalues of A. Often there are more eigenvalues in [l s A I then there

are poles in Equation 7-16. In this event, there will be roots present in

Cad j IIs - A[ IB which will cancel these extraneous eigenvalues.

The solution ef the eigenvalues of a matrix is a general problem treated in

the literature. The foUowing methods were evaluated for use:

I. Power Method (B, eference 19) -- For 26-order problems studied,

this method converged to eigenvalues for about 50% of the cases
run. It finds the larger roots accurately but gets no significant

digit _':curacy with small roots around the origin.

2. Davielewsky's Transformation (Reference 20) with Lin Root Finder ,--
(Reference 21) -- Three-digit accuracy has been achieved with the

26-order check matrixes evaluated. This approach has proved to

be the most accurate approac'n tried. However, the Lin root finder t_
has failed in approximately 15% of the cases attempted.

3. Hessenburg Transformation with Q-R Transform Root Finder
(Reference 22) -- This method has worked .,n all cases tested but

has not been used to any extent because of its late discovery.

_e
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Brockett (Keference 2B) presents an inverse matrix; the eigenvalues contain

the zeros of Equation 7-16. This inverse matrix is

1
[A - _ BCA _] {7-28) ,

where

k = CA _- 1 B (7-29)

and

k = transfer function gain in Equation 7-16.

= difference between the number of transfer function poles and
zeros. Thus must be at least plus 1.

Brockett does not suggest a method of determining _, but it can be found by

hunting on the value CAJ B, which will be zero until

j = _ - 1 (7-30)

The zeros of the transfer function Equation 7-16 are found by determining

the eigenvalues of Equation 7-28 in the same ways as described for pole

determination. Normally, there will be fewer zeros than poles, and since

Equation 7-28 is of the same dimension as A, there will be a surplus of

eigenvalues in the zero deter_:lination. In theory, this surplus will consist

of a multiplicity of eigenvalues at the origin, h_ practice, because of round-

off errors, this multiplicity will consist of small roots cluL_tered around the

origin. It _ occasionally very difficult to discriminate these roots from

valid low-frequency roots. In most cases the errors in these low-frequency

roots have led to very inaccurate steady-state solutions when transient

response runs have been generated from the computed transfer functions.

The above equations for finding the inverse system matrix have been coded

in _ subroutine, ZEROS, presented in Appendix A. The addition operations

are performed ir_ double precision to reduce round-off error.



Section 8

CONCLUSIONS

This section relates the work accomplished in relation to the design

philosophy underlying the study. The observations are based to a large

extent on the experiences of the past contract year.

8.1 DESIGN REQUIREMENTS

What are the basic requirements on the control system for a flexible launch

vehicle? The control system must control so that the vehicle is suitably

responsive to commands, suitably responsive to winds, and stable. It

should be as simple in concept and mechanization as is compatible with the

perful ,,lance requirements.

A system was developed which has a control natural frequency that is half of

the first bending natural frequency. The first bending mode is controlled to

a critical damping ratio of 0.3. The system appears to recover acceptably

from the upsetting influence of a sudden wind force. The system is stable

and shows tolerance to variation in plant parameters. The entire mission

has not been thoroughly analyzed, but it appears that similar statements will

hold true throughout the mission.

It appears plausible at this time that a system can be mechr.nized with a

limited number of gain changes as a function of time, and that parameter

identification may be unnecessary. This being granted, the system mecha-
%..

nization is little different from traditional designs. Only the linear ordinary

differential equations (usually mechanized as passive networks) relating

transducer response to control commands are different.

The location of sensors has not been stressed in this study because the

method is relatively insensitive to the location chosen,

_r
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The added function of parameter identification will probably be needed only

to attain either additional responsiveness or adaptivity (i. e., very tight con-

trol of loads and wind response and/or tolerance to exceptionally large

parameter uncertainties).

8. Z RESPONSE TO COMMANDS

The control commands on a large vehicle may be programmed or may be

dynamic in the sense that the missi.]e is continually guided to a path suitable

for the solution of the mission problem. In either event, the control system

should minimize the dynamic error from the intended path, as prescribed by

the commands, without introducing excessive loads on the vehicle. Because

of mission and guidance system requirements, there is some acceptable

maximum response time. One of the basic problems in design of a control

system for the flexible launch vehicle is to provide for adequate speed of

response to commands without designing a system very susceptible to slosh-

ing and bending.

No difficulty has been encountered in specifying the rigid body and first-mode

response. Higher modes could be controlled if desi:-ed. There is some

limitation on root location when several modes are to be controlled, but this

has not been a serious problem. Sloshing has not been a problem. Second

and higher bending modes have been gain-stabilized (their contribution has

been removed from the feedback to the control).

8. 3 RESPONSE TO WINDS

The control system must also provide for the vehicle to be suitably unrespon-

sive to winds, particularly the jetstream or windshear through which the

missile must move. The response of the missile as itproceeds through

windshear is a highly dynamic problem and results in three phenomena which

can be quite detrimental. First, the relatively steady components of the

wind cause the vehicle to drift away from the desired trajectory unless the

control system is specifically designed to prevent the effect. Second, the

dynamic changes in wind velocity tend to cause the missile to develop angle

of attack. This can produce loads in excess of the structural capability of

180
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the airframe. Third, the engine may be driven against the deflection limit,

with ensuing loss of control. Therefore, design of the control system must

consider the dynamic response of the vehicle to wind; the design must mini-

mize the structural loading encountered during a traverse of the jetstream.

A minimum of effort was applied explicitly to this problem, because this

study related only secondarily to loads. However, attention was given this

problem by choosing, from filters which provid¢,'t acceptable stability, the

one which gave the minimum dynamic attitude excursion when driven by a

step wind.

The trajectory response to wind, the loads developed in a shear, and the

control system sensitivity to p_rameter variations are very closely related.

It appears that improving system design can reduce loads until parameter

_ensitivity and/or complexity pinch too much. Much work remains in this

area, particularly if the contribution of the bending mode deflection to load

are to be considered. The theory is available for a more systematic

approach and future work should move in this direction.

8.4 STABILITY

It is important that the control system provide for suitable response to com-

mands and to wind disturbances, but it is mandatory that the control system

be stable. The control system design needs to be stable for the nominal

parameters assigned in the analysis and synthesis process and because of

the uncertainty of the parameters encountered in the actual flight environ-

ment. It can be extremely expensive (if not impossible) to measure all

these parameters before firing the vehicle.

By the theorem of Section 5, the optimal control and optimal filter problem %.

are separable. Thus, if optimal control is specified by performance

criteria, the stability is determined by the filter. The stability of roots

whose location is specified by the optimal control has not been a problem,

since they have been set well into the left half plane. The stability of the

remaining roots and their sensitivity to parameter variations are highly

dependent on the filter design. The usual modes for their stabilization

l:_OV
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appear. They can be.phase-stabilized (controlled) by moving them into the

group of controlled roots, or they can be gain-stabilized by the methods dis-

cussed in subsection 5.4. This effort has been successful in producing

stability on all the roots, and considerable tolerance to parameter variation

has been shown. However, a systematic "w_ay of choosing the best suboptimal

filter technique for the least sensitivity is still to be developed.

8.5 SIMPLICITY

The requirement for the control system to be simple, usually thought to be

,_quivalent to reliable, tends to mitigate against what has been called the

adaptive control system. While common sense may indicate that adaptivity

isunOesirable, because of its tendency to increase complexity, it may in

fact be necessary to achieve a proper balance among the requirements of

response to commands, response to wind, and stability.

As stated earlier, without parameter estimation, the system mechanization

is comparable to that of more conventionally designed zystems. With

parameter identification, necessary only if demanded by wind-induced effects

or excessive parameter uncertainty, the present technique appears exces-

sively complex. (The matrix Riccati equation must be solved in real time. )

The technique presented here is considerably simplified from the underlying

theory and it appears that further simplification (through approximation) is

possible (and certainly desirable).

8.6 COMPLEXITY OF PLANT

The control ._ystem for a flexible launch vehicle must cope with extraordinary

complexity. The concepts of body bending, actuator resonance, control

surface or engine inertial coupling flutter, and sloshing are not foreign to

the design of other aerospace vehicles. However, the importance of the

coupling of these phenomena has never been so pronounced as in the flexible

launch vehicle control system. It is this complexity that causes the tradi-

tional tools of control engineering, which have been quite adequate for low-

order, lightly coupled systems, to be marginal or inadequate for the

analysis and synthesis of control systems for the flexible launch vehicle.

182
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Modern control theory has provided systematic technique and method for the

synthesis of control systems of virtually unlimited complexity. Using these

techniques and emphasizing quadratic optimal control, state estimation _ia

Kalman-Bucy filter methods, and parameter estimation by closely related

methods, a highly systematic approach can be developed to the synthesis of

the flexible launch vehicle control system.

Considerable progress has been made in the development of tools for handling

the required high-order matrix manipulations. It is clear that with these

tools control systems can be designed which are well beyond the comprehen-

sion of the average designer using conventional techniques. While it is true

that the resultant linear controls and filters can be reduced to scalar net-

works (one input, one output), it is virtually inconceivable that the same

filter would be developed by an individual with even the keenest of intuitive

insights.

8.7 INTEGRATION

The design process for integrating suboptimal control and state and param-

eter estimation is approximately as follows:

1. Prepare the system equations in state-space form.

Z. Examine the open-loop roots and decide which ones must be altered.
For example, the damping on one or several bending modes may be
increased.

3. Approximate the high-order system by a low-order system contain-
ing only the states to be controlled.

4. Place costs on the states to be stabilized and on commands.

5. Determine roots and/or transient response as a function of the
weights, choosing weights _hat produce a satisfactory system.

6. Prepare a Kalman filter to estimate all the states required for

control. Represent the other states of the full dimensional systems _,
as noise (using the methods of Section 5). Use several signal-to-
noise ratios and generate several sets of the gains required in the
filter.

7. Using the control and filters as developed above, evaluate system
stability, transient response, and parameter sensitivity.

8. If the only systems giving satisfactory (usually fast enough) response
are unstable in one or two state variables, decide to include these
in the filter, and return to Step 6.

i ii i ii i
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9. Repeat Steps 1 through 8 for sufficient flight environments to cover
the mission. Determine the states which must be included in the
filter to cover the mission.

10. Determine if a compromise set of Kalman gains (one filter} will be
satisfactory or if switching or time-variable gains must be used.

1 1. If parameter sensitivity is not acceptable, determine if parameter
estimation is required, what parameters must be identified, and
design the parameter identifier.

iii mm •
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Section 9

SYMBOLS

A Reference area, in aerodynamic terms

A Plant dynamical matrix

A a Augmented state dynamical matrix

Estimate of A
a a

A + Augmented state and control distribution matrixa

A.. Submatrixes of A

ApR Plant dynamical matrix prior to simplifying manipulations

B Plant control distribution matrix

B a Augmented state control distribution matrix

A
B Estimate of B

a a

BBB Input multiplier to a body bending mode

B. Submatrixes of B
1

BpR Plant control distribution matrix prior to simplifying manipulations

BRB Input multiplier to a rigid body mode

C Measurement matrix, eliminated in algebraic simplification

C Frequently used scalar gain, often subscripted

C 1 Ae_ odynamic moment coefficient

C 2 Control moment coefficient

_r
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D Sensor observation matrix (D= H - CA)

E I I Expected value °f I l,the statistical "expected value °f" °perat°r

ESI Estimate of SI

ES2 Estimate of $2

F Vehicle thrust force

F A convenient matrix

G Plant disturbance distribution matrix

G. Submatrixes of G
1

GpR Plant disturbance distribution matrix prior to simplifying
transformation

H Measurement matrix

H a Augmented measurement matrix

I E Moment of inertia of engine

K Kalman gain matrix

K a Kalman gain matrix for augmented state estimate

Kop T Optimal control gain matrix

K#_ Bending influence coefficient (effect in 4)

Moment arm

L 2 Cost on e (rigid body attitude)

L 4 Cost on TlI(body bending deflection)

L 6 Cost on riz (second bending mode deflection)

m Vehicle mass

M Obs ervability matrix

N' Aerodynamic force, normal to missile centerline

IM
i|i ii H i i H i m if
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P Riccati equation dependent variable matrix
q

P Covariance matrix of error in estimation

Pa Covariance matrix of error in estimation of augmented state vector

Pij Element of Pa in ithrow and jth cc.:umn

q Dynamic pressure

Q Covariance of disturbance vector

R Covariance of noise vector

R' Thrust of deflecting engines

s Laplace trans.(orm variable.

SE Engine inertia term

SE = IE mE

S1 Parameter to be estimated

2
S1 = -e l

SZ Parameter to be estimated

R'Y 1 (x(3) ,

S2 = ml Y1 (AG)

t Real time

T Terminal time

u (or u) Plant control input vector

v White noise vector with covariance V5 (t - v)

V Vehicle velocity m/sec

Vw Velocity of wind

x Vehicle station

x (or x) state vector

m
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x a Augme.,ted state vector

x. Subvector of x

x_ Vehicle station at engine hinge

X Vehicle drag force

X Variable used to solve the matrix Riccati equation

Y Noise-free sensor signals, usually subscripted RG, AG, or AG

Y Variable used to solve the matrix Riccati equation

YK(x) Amplitude of Kth bending mode at station x

YK(x) Slope of Kth berding mode at station x

Z Noisy sensor signal, vector (also Z)

Z Vehicle lateral displacement in reference coordinates

a Constant related to Markov wind
W

Engine deflection

61 Scalar variable related to q l by

61 = Y1 (RG) • q I

Optimal control gain matrix (with subscript, appropriate element
of A)

qK Generalized displacement in Kth bending mode

k I Cost on terminal condition

k 2 Cost on state deviation

k 3 Cost on control

g Critical damping ratio

_. System disturbance vector (white)

k188
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t

ga Augmented white noise disturbance vector

gBB Closedloopdamping ratio for a body bending mode

Pj Pj : PZj + P4j

T Sampling interval

T Miscellaneous time augment

_b Vehicle angular displacement

¢_(w) Spectral density

w Frequency variable

COBB Closed loop body bending mode bandwidth

wi Natural frequency of ith bending mode

WRB Clo_ed loop rigid body bandwidth

' Wsj Natural frequency of jth sloshing mode

( )_ Conjugate transpose

( )-I Inverse of matrix ( )

(_) Signifies a vector

( )' Transpose of matrix ( )
A

( ) Least square estimate of ( )

( ) An estimation error in ( )

( )AG Refers to attitude reference, also (AG)

( )AC Refers to accelerometer, also (AC)

( )E Relates to gimballed engine

( )RG Refers to rate gyro, also (RG)

( )sj Refers to jth sloshing mode

i i ii i i i I
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( )w Refers to wind inputs

• Terms in a series in which are contained Tn, n > I

190
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Appendix A

COMPUTER ROUTINES

A. 1 SYSTEM REDUCTION TO STATE-SPACE FORM

Purpose"

This Program presents launch vehicle dynamical equations in the form

= A_x + Bu (A-l)

y = Hx (A- 2)

where A, B, and H are the program outputs. The vehicle model contains the

following dynamic components:

1. Vehicle lateral velocity.

_. Rigid body angular displacen_ent.

3. Three sloshing modes.

4. Four bending modes.

5. Third order engine-actuator subsystem.

6. First-order Markov wind generator

System Equations :

The basic system equations were furnished by Marshall Space Flight Center

and are as follows

Trans lation

- m'_V _" + + CR-m _'msj sj "_

(A-3)
R w N'

+ 'PR +. Vw
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Rotation

C1 (A-4)
ci z ci %--V v - ca %_'R--- -_ - w

.th
] Sloshing Mode

x) , 'isj = CR- _°sj Zsj m _YK(Xsj) - sj
' (A- 5)

- 2; YK (Xsj) HKK

.th
1 Bending Mode

Z •

Gi z +GiCR I (F- X)z msjY_(xsj)Zsj- " n.VIi = ---Q- - _ rn • I I IJ

G.
R' I

R' (X_) _ Y' (X_) nK Z_iw i 1%.+_ Y- (X 0) _R +-_ V-- Yi K - 1 m i 1 w
m i

(A-6)

+ I I Yi (Xsj) i
m. [SE Yi (X_) + I E Y[ (X[_)] "_R " _n. 2_ msj sj

l

1
m. [SE Yi (X_) +I E Y_ (Xo)] Z Y' (X 0) 14k-_ I K K

I

where

qA--f I 8O--_a' Y. (X) dX (A-7)
G i = miCJ ° 1
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Engine/Actuator

Markov Wind

v= - _ v + _ (A-9)
W W

The following are the combinations of the system states seen by the'atti'_ude

gyro, rate gyro, and the accelerometer, respectively

YAG = @ - Z Y_x{XAG) qi {A-10)
i

YRG = _ " Z Y!_(XRG) _li (A-II)
i

' YAC = " JA_ + E Yi _i .(Fi (XAc) reX)*

(_'.-Iz)

+ F- X Z Y_ {XA) fii

The definitionsof the terms in these equations are presented in Tables A-I

and A- 2.

To solve for A, B, and H, Equations A-3 through A-IZ are arranged in the

form

FX = ApRX + BpRU (A-13)

Y = CX+ DX (A-14)

a . , . , I("N
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where

_ = [Z¢_ ZsI ZsIZs2Zs2Zs3Zs3_ql_I _2_2_q3_3_q4_4_ Vw ]' (A-15)

Y = [YAG YRG YAC ]' (A-16)

Computer locations 1 through 96 contains the program input data, which

consists of the launch vehicle, parameters. These parameters, together

with their descriptions, units, and storage spaces are listed in Table A. 1.

Equations A-3 through A-9 appear in the system matrixes of Equations A-13

and A-14 in the same order as presented here. The matrix elements are

coded individually or in groups from left to right, and downward• Table

A-3 conLains the computer terms used for the various matrixes.

Once the elements of the matrixes in Equations A-13 and A-14 are com-

puted, the equations are regrouped to assume the form of Equations A-1

and A- Z.

-1 -1

X = F APRX + F Bp_uR (A-17)

= AX + Bu (A-18)

Using Equation A-18, Equation A-14 can be written

Y : CX + D (AX+ Bu) (A-19)

for this system DB = 0, so Equation A-19 simplifies to

Y- = (C + DA) X (A-Z0)

so the observation matrix is

H = C + DA (A-Z1)
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Table A- 1

DOCUMENTATION OF TERM DEFINITIONS USED

IN PROGRAM H266 (page 1 of 4)

Compute r System
Location Symbol Symbol Definition or Description

N'
1 CI -- Aerodynamic effectiveness parameter (I/sec 2)

IXX _CP

2 CZ R_.._'fOG Control engine effectiveness parameter (l/see Z)
IXX

3 AN N'
CzoqA aerodynamic force (kg)/_rad))

4 V V Velocity (m/sec)

5 FC F Total thrust of booster (kg)

6 EX X Drag force (kg) qA
CD o

7 ALW W Angle of attack due to wind (rad/sec), break
freq.

8 RP R' 1 F, thrust of control engine (kg)
2

9 SE S E F_rst moment of swivel about gimbal point,
(Kg- sec 2 )

I0 AM m Total mass of vehicle (kg-secZ/m)

- sec21l I AMS(1) rnsl First siosh mass( Kg

AMS(2) rnS2 Second slosh mass ( Kg :msec2)
12

13 AMS(3) mS3 Third slosh mass (Kg mSeC2)

14

15 ALS(1) ISl Distance from vehicle c.g. to slosh mass
c g.,(Xcg- XSI){rn)

16 ALS(2) _S2 (Xcg- XSZ) rn

17 ALS(3) IS3 (Xcg - XS3) m

18 _
!

19 YPB(I) YI(X_ ) Normalized slope of i th mode at station X_engine (1/m)
I

20 YPB(2) Y2 (X_) Normalized slope of i th mode at station X_
engine (l/m) for 2nd mode

I

21 YPB(3) Y3 (X_) Normalized slope of i th mode at station X_
engine (I/m) for 3rd mode

22 YPB(4) Y_ (X[5) Normalized slope of ith mode at station X[5
engine (I/m) for 4t..hmode

23 YB(1) YI(X_ Normalised displacement of I st mode at
engine station (ND)

24 YB(2) Y2(X_) Normalized displacement of 2nd mode at
engine station (ND}

25 YB($) Y3(X_) Normalized d/splacement of 3rd mode at
engine station (ND) "
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Computer System
Location Symbol Symbol Definition or Description

26 YB(4) Y4(X_) Normalized displacement of 4th mode at engir:e
station (ND)

37

28 Z(l) _l 1st mode bending damping (ND)

?.9 Z(2) _2 2n___ddmode bending damping (ND)

30 Z(3) _3 3r_.ddmode bending damping (ND)

31 Z(4) _4 4th mode bending damping (ND)

32 W(1) W1 ls_tt bending mode frequency (rad/sec_

33 W(2) W2 2n.._dbending mode frequency (rad/sec)

34 W(3) W3 3rd bending mode frequency (rad/sec)

35 W(4) W4 4th bending mode frequency (rad/sec)

36 YXS(I, 1) YI(XS1) 1st bending mode displacement at ls_.t slosh
mass cg (ND)

37 YXS(1, 2) Y2(XsI) 2nd bending mode displacement at 1st slo_h
mass cg (ND)

38 YXS(1, 3) Y3(XsI) 31d bending mode displacement at ls_t slosh
mass cg (ND)

39 YXS(I, 4) Y4(XsI) 4t__hhbending mode displacement at Is_tt slosh
mass cg (ND)

40 YXS(2, 1) Y I(XS2) Is._tbending mode displacement at 2n._ddslosh
mass cg (ND)

41 YXS(2, 2) Y2(Xs2) 2nd bending mode displacement at 2n__ddslosh
mass cg {ND)

42 YXS(2, 3) Y3(Xs3) 3r_.d.dbe31ding mode displacement at 2n_.ddslosh
mass (I_D)

43 YXS(2, 4) Y4(Xs2) 4th bending mode disi_lacement at 2nd slosh
mass (ND)

44 YXS(3, 4) YI(XS3) ls...ttbending mode displacement at 3r.._dslosh
mass (ND)

45 YXS(3, 2) Y2(Xs3) 2n.._ddbending mode displacement at 3r._.ddslosh
mass (ND)

46 YXS(3, 3) Y3(Xs3) 3r_..ddbending mode displacement at 3r._ddslosh
mass cg (ND)

47 YXS(3, 4) Y4(Xs3) 4thh bending mode displacement at 3r_..ddslosh
mass cg (ND)

48 q Dynamic pressure (Kg/m z)

40 AlE IE Engine moment of inertia about gimbal point,
(Kg- m- sec Z)

50 AIX lxx Pitch plane moment of inertia about vehicle
cg, (Kg-m-sec 2}

51 ZS(I} _SI Ist tank slosh damping (ND}
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Table A-I (page J of 4)

Compute r Sy s tern
Location Syrnbcl Symbol Definition or Description

52 ZS(2) _$2 2n..ddtank slosh damping (ND)

53 ZS(3) _$3 3r_._dtank slosh damping (ND)

54 WS(1) WSI Ist slos,_ tank frequency (rad/sec)

55 WS(2) WS2 2nd slosh tank frequency (rad/sec)

56 WS(3) V,'S3 3r._ddslo_h tank frequency (cad/see)

57 YPS(I, I) Y_(XsI ) Is._t bending r_ode normalized slope at Ist slosh
mass cg, (I/m)

58 YPS(I, 2) Y2(Xs1) 2n__ddbending mode normalized slope at 1st slosh
mass cg, (I/m)

!

59 YPS(1,3) Y3(XsI) 3rd bending mode normalized slope at ls__t slosh
mass cg, (l/m)

60 YPS(I. 4 _ Y4(XsI) 4th bending mode normalized slope at 1st slosh
mass cg, (l/m)

61 YPS(2, I) YI(Xs2) Ist bending mode normalized s!ope at 2nd slosh
mass cg, (I/m)

62 YPS(2, 2) Y2(Xs2) 2n.._dbending mode normalized slope at 2nd slosh
mass cg. (l/m)

63 YPS(2, 3) Y3(Xs2) 3r.dd bending mode normalized slope at Znd slosh
mass cg, (l/m)

64 YPS(2, 4) Y_ (Xs2) 4th bending mode normalized slope at 2nd slosh
mass cg, (l/m)

65 YPS(3, I) Y_ (Xs3) Is_.tt bending mode n_rmalized slope at 3rd slosh L
mash cg. (I/rn)

66 YPS(3, 2) Y_(Xs3) 2nd be'_ding mode normalized slope at 3rd.d slosh
rn_ss <g, (l/m)

67 YPS(3, 3) Y3(XS3) 3rd bendins mode norm-" lized slope at 3rd slosh
mass cg, (l/m)

68 YPS(3, 4) Y4(Xs3) 4t..hhbending mode normalized slope at 3rd slosh
mass cg, (I/m)

69 BM(1) M I Ist bending mode generalized mass. (Kg-sec2/rn)

70 BM(2) M 2 2n_.ddbending mode generalized mass, (Kg-sec2/rn) "_

71 BM(3) M 3 3r_.ddbending mode generalized m_.ss, (l_'g-sec2/m)

72 BM(4) M 4 4_h bending mode generalized mass, trig-sec2/rn)

0Czo

73 GCI Ol axn YiCXnli: l. z, 3,4. i: l
74 G(2) G 2 Generalized aerodynamic force function, (K_) i = 2

75 G(3) ,33 Generalized aerodynamic force _unction, (Kg) i = 3

76 O(4) G 4 Generalized aerodynamic force function. _K_) i = 4

77 YA(1) YI(XA) Is._t bending mode normalized displacement at
accelerorneter sta. (ND)
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Compute r System

Location Symbol Sy.r bol Definition or Description

78 YA(2) Y2(XA) 2nd bending mode normalized displacement at
accelerometer sta.(ND)

79 YA(3) Y3(XA) 3rd bending mode normalized displacement at
accelerometer .,ta. (ND)

80 YA(4) Y4(XA) 4th bending mode normalized displacement at
accelerometer sta. (ND)

81. YPRG(1) Y'I(XRG) Ist bending mode normalizec slope at rate gyro
station, (l/m)

l

82 YPRG(2) Y2(XRG 2n.._d bending mode normalized slope at rate gyro
station, (I/m)

83 YPRG(3) Y3(XRG) 3r__ddbending mode normalized slope at rate gyro
station (I/m)

r

84 YPRG(4) Y4(XRG) 4th bending mode normalized slope at rate gyro
station (I/m)

l

85 YPMG(1) YI(HIG) Ist bending mode normalized slope at attitude ,
gyro station, (l/m)

86 YPMG(2) Y2 (HIG) 2nd bending mode normalized slope at attitude
gyro station, (I/m)

e

87 YPMG(3) Y3(HIG) 3r._dd bending mode normalized slope at attitude
gyro station, (I/m)

l

88 YPMG(4) Y4(HIG) 4th bending mode normalized slope at attitude
gyro station, (1/m)

89 X(89) C[3 Actuator transfer function relating {'_/_),
(l/sec 3)

90 X(90) C_ Actuator transfer function relating i_/_),
(I/sec 2)

91 X(91) C_ Actuator transfer function relating ('_'/_),
(I/sec)

92 ALA IA Distance from vehicle CG to accelerometer,

(XCG- XA), (m)

93 YPA(1) Y'I (XA) 1st bending mode normalized slope at
accelerometer sta X A, (l/m)

w

94 YPA(2) Y2(XA) 2n._ddbending mode normalized slope at
accelerometer sta. X A, (I/m)

95 YPA(3) Y_(XA) 3r__ddbending mode normalized slope at

accelerometer sta, X A, (l/m)
I

96 YPA(4) Y4(XA) 4th bending mode normalized slope at
accelerometer sta. X A, (l/m)
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Table A- 2.

DEFINITION OF SYMBOLS NOT DEFINED IN PROGRAM H266 LIST

Symbol Definition Unit

Attitude angle Rad

Angle of attack Rad

Control deflection angle Rad

V Wind velocity m / sec
W

Z
I Pitch plane moment of inertia about the CG Kg-rn-sec

XX

aLA Vehicle longitudinal acceleration m/sec _

top Distance from vehicle CG to the CP (XcG - XCp ) m

tCG Distance from engine girnbal to vehicle CG:
(XcG - X_) rn

t E Distance from engine girnbal to engine mass CG:
(X_ - XE) rn

Z . Slosh mass displacement, normal to reference ,-n
sj

(Xsi - X_) Distance from engine gimbal to slosh mass CG m
Z

A Cross sectional reference area m

I]i Generalized displacement of the _th mode (normal
coordinate s) m

Yi(x)_i Displacement at Sta. X due to the i th mode rn
I

Yi(xb]i Angular displacement at Sta. X due to the i th mode Rad
I

Yi(x)_i Angular rate at Sta. X due to the i th mode Rad/sec

Yi(x)_i Angular acceleration at Sta. X due to the i th mode Rad/sec z

Symbol Subscripts Definition Unit

CG Center of gravity

CP Center of pressure

LA Longitudina i acceleration

# Position gryo

A Accelerometer _,,

E Engine

Angle of attack

S Slosh

R Rigid body

B Bendin_ body

W Wind

.th
j j slosh tank

i ith bending mode

X Vehicle station

O Engine girnbal

R, B Rigid body plus bending body

1966022830-246



iiii

[
1

T
i

° t

1
I

BLANK PAGE T

1966022830-247



.Ji

<I

IN

1966022830-248



('5,1

UIJ

1966022830-249



1966022830-250



4"

0
0 .'_

0

p-

1966022830-251



_M

,F

i

w

I " ' " _m

1966022830-252



A. Z RICCATI DIFFERENTIAL EQUATION SOLUTION

s

Purpose: To find the solution P(t) to the matrix Ricatti equation

i5(t)+ PA + ATp - PGP + Q = [0] at a specified

AT th •time where is the transpose of A. The above n

order nonlinear differential equation is replaced by

2n tha order linear first order matrix differential

equation whose solution "s straightforward. See the

METHOD and EQUATIONS section below for details.

Use: CALL RICAT (pOmat, amat, groat, qmat, n, tstart, '

tlast, itengi, itnorm, pmat, itau, tau, ierror)

where

Input pOmat is a REAL two dimensional (21 by Zl) array
which contains [P(cstart)].

amat is a REAL two dimensional (Zl by Zl) array
which contains [A].

grnat is a REAL two dimensional (2i by Zl) array
which contains [G].

qmat is a REAL two dimensional (21 by 21) array
which contains [Q].

n is an INTEGER variable or constant which

denotes the number of rows (or columns)

in [PO], [A], [G], [Q], and [P]. Thus n
is the order of a matrix, n must be less

than or equal to Z l.

tstart is a REAL variable or constant which

denotes the starting value for t.

itengi is an INTEGER variable or constant which
denotes the number of iterations which are

to be performed on the P(t) equation using

the tau specified by the engineer.

(Ifitengi is given a non-zero value,
v = (tlast - tstart)/itengi will be used
unless it is deemed to be too large.) If
itengi = 0, this subprogram will calculate
a v from the norm of [Z] and do itnorm
iterations on P(t). (itnorm is defined

immediately following. )

r
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itnorm is an INTEGER variable or constant which

denotes the number of iterations which are
to be done on the P(t) matrix with the value
of T calculated from the norm of [Z], If itengi

0, but the T calculated by T = (tlast -
tstart)/itengi is deemed too large by this
subprogram, then itnorm iterations will be
done on P(t) using a T calculated from the
norm of [Z].

Output pmat is a REAL two dimensional (_I by Zl) array
in which the last iteration of P(t) will be
stored.

itau is an INTEGER variable which will be set
to I if the T used was calculated from the

norm of [Z]. Otherwise itau will be i,;t to
zero.

tau is a REAL variable which will be set equal
to the value of T used in calculating the
P{t) matrixes.

ierror is an INTEGER variable which will be set

equal to I if any of the Jell] _ [el2][P(t)]
matrixes could not be inverted. Otherwise
it will be set to zero.

Accuracy: This subroutine should provide four decimal place

accuracy in the elements of [0] except that elements

with absolute values greater than 10 3 may have only

six significant digits.

Method and The n th order matrix Riccati equation
Equations:

= -PA - ATp + PGP- Q

is equivalent to the equation _,.

-I
P = YX

whe re

[-:,°T][:]:z[:]

. . , . "-PI 1
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The Znth order linear first order matrix differential

equation ha s the solution

where

[Tz]Z [TZ]3+. +[Tz]n[eZ'] = [o] = [[] + [_z] + z'- + 3' "" n'

Partitioning the above transition matrix, [el, we have

[x,,+,,]to:,o q[x,1
Y(t+-)] L_,zz ezzjLY(t)j

Since

-I
P = YX

then

P(t+v) = [Y(t+T)][X(t+T)]"I

= feliX(t)+ 8zzy(t)][BllX(t)+ 81zY(t)]-I

Using the factthat Y(t) = P(t)X(t),we have the following

iterativeprocedure for calculatingthe solutionfor the

matrix Riccati e%uation as a function of time

P(t+v) = [BZl + ezzP(t)][ell+ ol2p(t)]'l

12
m
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If T is calculated from the norm of [Z] to provide the

accuracy mentioned above, the folJ_wing formula is

used:

T = (tlast- tstart)
llZlW

where IIZ[I is the norm of [Z] defined by

I'Z,, - Min{ (,zij,) (2;I ,)}
max 2_ [, max

i j j i zij

where

[Z] - [zij]

Storage Requirements: This subprogram requires about 80!8 words of core

storage. Of this 8018 words, 529Z words are used

for storage of three 4Z by 42 matrixes which are used

when calculating [0], 567 words are used for storage

of two Zl by Zl temporary arrays and two 21 by 3

temporary arrays[ roughly 300 words of coding are

used in determining when the matrix Taylor series

for [O] has converged; and roughly 120 words of

coding are used in computing T from the norm of [Z].

The 8018 words of storage mentioned _bove do not

inclvde the 2205 words which are required for storage

of [A], [G], [Q], [P], and [PO] which are all Zl by Zl _,

arrays, m

w

!
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A-3 Riccati Equation Steady-State Solution by Quasilinearization "QUASI"

This FORTRAN-IV subroutine solves the matrix equation

O : -PA - ATp + PGP T - Q

The method of solution is described in subsection 7. 1.3 The call-instruction

is:

CALL RICSS (A, G, Q, PO, E, NS, IX:AR, NCY, PT2, DT, NC)

input
A = An N x N matrix.

G = An N x N matrix.

Q - An N x N matrix.

PO = An N x N positive-definite, symmetric matrix, an initial esti-
mate of the matrix -P.

E = A small positive scalar useG t terminate the iteration process
whenIIII<E.

NS = N, the dimension of the ( A ). This is presently limited to 12.

NAR = The dimension of the square arrays in which A, G, Q, and PO
are stored.

NCY = The maximum number of iteration_ which the subroutine will

be allowed to cycle through. This is needed in case the iterative

process is not convergent.

Output

PTZ = []P[[ = ZPKK

DT = PTZ(K) - PTZ(K- I)

NC = The number of cycles iterated through before DTLE

PO = The Po-matrix is replaced by P-steady state

This subroutine calls on matrix inversion subroutine "SID" with cards IZZ

and 123. This or a comparable subroutine must be made available.

Subroutine listing follows.

""0 • I
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A-4 Transfer Function Solution by Recursion Equation "TRAFN"

This FORTRAN-IV subroutine extracts from the equations

= Ax + Bu

y = Cx

The gain and roots of the polynomial

K(S+ Zl)(S+ Z2)...
y/u =

(S + Pl ) (S + PZ) ...

The equations used to perform this process are listed in subsection 7.2.1. The

performance of this subroutine is also discussed in this section. The call-

statement i s

CALL TRAFN (A, B, C, NS, NAB)

A = The N x N matrix.

B - The N x 1 matrix.

C = The 1 x N matrix.

NS = N, the order of the system, -< 36 w"

NAR = The dimension of the square array containing A

Output

The numerator and denominator polynomials, the gain (K), and the poles (Pi)

and zeros (Zi) are printed out.

;A a
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A-5 Brockett's Method of Transfer Function Zero Derivation "Zeros"

This" FORTRAN-IV subroutine takes as input the matrixes A, B, and C of the

linear dynamical system transfer hmction described by

= Ax + Bu

y = Cx

and generates a N x N matrix, W_SP, the eigenvalues of which contain the

zeros of the transfer function

K(S + Zl)iS JrZ_)...
y/u =

(S + Pl ) (S + PZ) ...

It also generates the gain, K. The equations used to obtain this matrix are

listed in subsection 7.Z.Z. The problems related to the use of this program are

also discussed in this section.

The program is not self sufficient, but calls on an eigenvalue subroutine

"Poles" to find the eigenvalues of the W@SP-matrix.

The subroutine caU statement is

CALL ZEROS (A, B, C, NS, NAR)

A = The N x N matrix.
I

B = The N x 1 matrix.

C = The I x N matrix. _"

NS = N, the dimension of the system, -<30

NAR = The dimension of the square array containing A

The subroutine first prints the gain K and then the _-term which is the

difference between the number of zeros. Once the eigenvalues of W#SP are

computed this number of approximately zero eigenvalues must be discarded.

t

_r

1966022830-270



The subroutine calls on an eigenvalue subroutine "Poles" to print the eigen-

values of W_SP.

Listing follows:

l

228
Ill II Ill I mmmmm_mmmma mmm m mmm m a
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ZI- DIMENSION SYST EM MAT RIXES

PRECEDINGPAGE BLANK NOT FILMED.
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